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Abstract

Let π denote an essentially Speh representation of the general lin-
ear group over a non-archimedean local field or its separable quadratic
extension, and let σc denote an irreducible cuspidal representation of
either symplectic, special odd-orthogonal, or unitary group. We de-
termine when the induced representation π ¸ σc contains a discrete
series subquotient. We also identify all discrete series subquotients.

1 Introduction

Let F denote a non-archimedean local field F , and let F 1 stand either for
F or for its separable quadratic extension. Let ρ denote an irreducible cus-
pidal representation of the general linear group over F 1. For a real number
a, a non-negative integer k and a positive integer n, a unique irreducible
subrepresentation of the induced representation

δprνaρ, νa`kρsq ˆ δprνa`1ρ, νa`k`1ρsq ˆ ¨ ¨ ¨ ˆ δprνa`n´1ρ, νa`k`n´1ρsq

is called the essentially Speh representation, and we denote by Spa, k, n, ρq.
We emphasize that representations of such a form play a fundamental role in
the identification of the unitary representations of the general linear group
([16, Theorem 7.5]).

Let us denote by σc an irreducible cuspidal representation of either sym-
plectic, special odd-orthogonal, or unitary group. Since the essentially Speh
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representations play a prominent role in the unitary dual of the general lin-
ear group, it is of particular interest to have a better understanding of the
composition factors of parabolically induced representation Spa, k, n, ρq¸σc.

Recently, a complete description of the composition series in the case
a ě 1

2
has been given in [3]. We note that, although [3] deals with the

symplectic and special odd-orthogonal group, the unitary group case can be
handled in the exactly same way. There is still not much known about the
composition factors of an induced representation of the form Spa, k, n, ρq¸σc
in the case a ă 1

2
. Our aim is to tackle this problem by determining the

existence of discrete series subquotients in a very concise way. Besides being
interesting by itself, the existence of such subquotients usually presents one
of the crucial steps towards the description of all irreducible composition
factors.

In the following theorem we summarize our main results.

Theorem 1.1. Let ρ denote an irreducible cuspidal representation of the
general linear group over a non-archimedean local field, and let σc stand
for an irreducible cuspidal representation of either symplectic, special odd-
orthogonal, or unitary group. Let a stand for a real number, let k denote
a non-negative integer, and let n stand for the positive one. If a ` k ď 0
and a` n´ 1 ě 0, the induced representation Spa, k, n, ρq ¸ σc does not con-
tain a discrete series subquotient. Otherwise we can assume that a` k ą 0.
Then Spa, k, n, ρq ¸ σc contains a discrete series subquotient if and only if ρ
is F 1{F -selfdual, for a unique non-negative α such that ναρ¸ σc reduces we
have a´ α P Z, ´k

2
ă a, and either 0 ă a` n´ 1 “ α or a` n´ 1 ď α.

Furthermore, if Spa, k, n, ρq ¸ σc contains a discrete series subquotient,
then it contains a discrete series subrepresentation.

We note that in the case n “ 1 analogous results have been obtained
in [14], while in the case k “ 0 and a half-integral analogous results follow
from [9, Section 3]. Condition ´k

2
ă a makes a natural sense, since then

all representations δprνaρ, νa`kρsq, . . . , δprνa`n´1ρ, νa`k`n´1ρsq have positive
central characters.

In Propositions 3.1, 3.4, and 3.7 we provide an explicit description of all
discrete series subquotients of Spa, k, n, ρq ¸ σc.

In the following section we present some preliminaries, while in the third
section we obtain our main results, using a case-by-case consideration. Our
approach is based on the calculation of embeddings and Jacquet modules of
discrete series representations, using the Mœglin-Tadić classification, and
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covers symplectic, special odd-orthogonal, and unitary groups over non-
archimedean local fields of arbitrary characteristic. In the case of symplectic
and special odd-orthogonal groups over a non-archimedean local field of char-
acteristic zero, it seems that analogous results could also be obtained using
the LLC approach to the classification of discrete series, given in [19].

This work has been supported in part by Croatian Science Foundation
under the project IP-2018-01-3628.

The first named author would like to thank the Erwin Schrödinger In-
stitute for the support and hospitality while working on this paper. The
authors would like to thank the referee for useful comments and suggestions,
which have greatly improved the paper.

2 Preliminaries

Through the paper, we denote by F a non-archimedean local field. We will
fix one of the following series tGnu of classical groups over F .

In the odd orthogonal group case, we fix an anisotropic orthogonal vector
space Y0 over F of odd dimension and consider the Witt tower based on
Y0. For n such that 2n ` 1 ě dimY0, there is exactly one space Vn in the
tower of dimension 2n ` 1. Let Gn stand for the special orthogonal group
of this space. If Vn stands for the symplectic space of dimension 2n in the
corresponding Witt tower, we denote by Gn the symplectic group of this
space. We also consider the unitary groups Upn, F 1{F q, where F 1 stands for
a separable quadratic extension of F . There is also an anisotropic unitary
space Y0 over F 1, and the Witt tower of unitary spaces Vn based on Y0. We
denote by Gn the unitary group of the space Vn of dimension either 2n ` 1
or 2n.

We fix a minimal parabolic subgroup in Gn and consider only the stan-
dard parabolic subgroups with respect to this fixed minimal parabolic sub-
group. When working with the unitary groups, we let F 1 denote a separable
quadratic extension of F , otherwise let F 1 denote F . We fix one of the se-
ries tGnu as above. For representations δi of GLpni, F

1q, i “ 1, 2, . . . , k, and
representation τ of Gn1 , we denote by δ1 ˆ ¨ ¨ ¨ ˆ δk ¸ τ the representation
parabolically induced by δ1b¨ ¨ ¨bδkbτ . We use a similar notation to denote
a parabolically induced representation of GLpm,F 1q.

By IrrpGnq we denote the set of all irreducible admissible representations
of Gn. Let RpGnq denote the Grothendieck group of admissible representa-
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tions of finite length of Gn and define RpGq “ ‘ně0RpGnq. In a similar way
we define IrrpGLpn, F 1qq and RpGLq “ ‘ně0RpGLpn, F

1qq.
Let n1 be the Witt index of Vn if Vn is symplectic or even-unitary group,

and n1 “ n ´ 1
2
pdimF 1pY0q ´ 1q otherwise. For σ P IrrpGnq and 0 ď k ď n1

we denote by rpkqpσq the normalized Jacquet module of σ with respect to the
parabolic subgroup Ppkq having the Levi subgroup equal to GLpk, F 1qˆGn´k.
We identify rpkqpσq with its semisimplification in RpGLpk, F 1qqbRpGn´kq and
consider

µ˚pσq “ 1b σ `
n1
ÿ

k“1

rpkqpσq P RpGLq bRpGq.

For π P IrrpGLpn, F 1qq we define m˚pπq “
řn
k“0prpkqpπqq P RpGLq b

RpGLq, where rpkqpπq denotes the normalized Jacquet module of π with re-
spect to the standard parabolic subgroup having the Levi factor equal to
GLpk, F 1q ˆ GLpn ´ k, F 1q. We identify rpkqpπq with its semisimplification,
and then extend m˚ linearly to the whole of RpGLq.

We denote by ν the composition of the determinant mapping with the
normalized absolute value on F 1. Let ρ P RpGLq denote an irreducible cus-
pidal representation. By a segment we mean a set of the form rρ, νmρs :“
tρ, νρ, . . . , νmρu, for a non-negative integer m. By [20], the induced rep-
resentation νmρ ˆ νm´1ρ ˆ ¨ ¨ ¨ ˆ ρ has a unique irreducible subrepresen-
tation, denoted by δprρ, νmρsq, which is essentially square-integrable. For
every irreducible essentially square-integrable representation δ P RpGLq,
there is a unique epδq P R such that ν´epδqδ is unitarizable. Note that
epδprνaρ, νbρsqq “ pa` bq{2. Suppose that δ1, δ2, . . . , δk are irreducible essen-
tially square-integrable representations such that epδ1q ď epδ2q ď . . . ď epδkq.
Then the induced representation δ1 ˆ δ2 ˆ ¨ ¨ ¨ ˆ δk has a unique irreducible
subrepresentation, which we denote by Lpδ1, δ2, . . . , δkq. This irreducible sub-
representation is called the Langlands subrepresentation, and it appears with
multiplicity one in the composition series of δ1 ˆ δ2 ˆ ¨ ¨ ¨ ˆ δk. Every irre-
ducible representation π P RpGLq is isomorphic to some Lpδ1, δ2, . . . , δkq and,
for a given π, the representations δ1, δ2, . . . , δk are unique up to a permutation
([2, 15]).

The essentially Speh representations are irreducible representations of the
form Lpδ1, δ2, . . . , δnq, where δi – δprνa`i´1ρ, νb`i´1ρsq, for i “ 1, 2, . . . , n,
real numbers a and b such that b ´ a is a nonnegative integer, and an irre-
ducible cuspidal representation ρ of GLpnρ, F

1q.
For an irreducible smooth representation π P RpGLq, let rπ stand for the
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contragredient representation of π. If F “ F 1, we say that π is F 1{F -selfdual
if π – rπ. If F ‰ F 1, we denote by θ the non-trivial F -automorphism of F 1,
let qπ denote the representation g ÞÑ rπpθpgqq, and say that the representation
π is F 1{F -selfdual if π – qπ.

Through the paper we fix an irreducible cuspidal representation σc P RpGq
and an irreducible cuspidal representation ρ P RpGLq.

By the classification of discrete series representations ([10, 13]), which now
holds unconditionally due to [1], [12, Théorème 3.1.1] and [5, Theorem 7.8],
a discrete series representation σ P Gn is uniquely described by an admissible
triple which consists of the Jordan block Jordpσq, the partial cuspidal support
σcusp, and the ε-function εσ.

The partial cuspidal support of σ is an irreducible cuspidal representation
σcusp P RpGq such that there is an irreducible representation π P RpGLq and
an embedding σ ãÑ π ¸ σcusp.

The Jordan block of σ is set of all ordered pairs px, ρq, where x is a
positive integer and ρ P RpGLq is an irreducible F 1{F -selfdual cuspidal rep-

resentation, such that the induced representation δprν´
x´1
2 ρ, ν

x´1
2 ρsq ¸ σ is

irreducible, and δprν´
x´1
2
´mρ, ν

x´1
2
`mρsq¸σ reduces for some positive integer

m. The ε-function εσ is defined on a subset of Jordpσq Y Jordpσq ˆ Jordpσq,
and attains values on t1,´1u.

For an irreducible F 1{F -selfdual cuspidal representation ρ P RpGLq we
write Jordρpσq “ tx : px, ρq P Jordpσqu. If Jordρpσq ‰ H and x P Jordρpσq,
denote x “ maxty P Jordρpσq : y ă xu, if it exists. We note that to define
the ε-function on the elements of Jordpσq ˆ Jordpσq, it is enough to define
the ε-function on the elements of the form ppx , ρq, px, ρqq. Also, to define the
ε-function on the elements of the form px, ρq, it is enough to define it either
on pminpJordρq, ρq or on pmaxpJordρq, ρq.

Let us recall some properties of the ε-functions which are commonly used
in the paper, following [14, Section 2]. If εσppx , ρq, px, ρqq “ 1, there is a
discrete series σ1 such that Jordpσ1q “ Jordpσqztpx, ρq, px , ρqu, σ is a sub-

representation of δprν´
x ´1

2 ρ, ν
x´1
2 ρsq ¸ σ1. If in Jordρpσq we have x “ y and

z “ px q , then

εσ1ppz, ρq, py, ρqq “ εσppz, ρq, px , ρqq ¨ εσppx, ρq, py, ρqq. (1)

If in Jordρpσq we have x “ y and εσpx, ρq is defined, then

εσpx , ρq “ εσ1py, ρq ¨ εσppx, ρq, py, ρqq. (2)
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For more details on these invariants and the notion of the admissible
triple, we refer the reader to [10, 13] and [14, Section 2].

Let us briefly note that notions of the Jordan blocks and ε-function from
the Mœglin-Tadić classification are transferred to the work of Arthur. The
Jordan blocks are precisely the L-parameters of the discrete series of group
Gn, and for a discrete L-parameter φ of Gn, there is σ belonging to the
corresponding L-packet such that we have

φ “ ‘pa,ρqPJordpσqρb Va,

where Va stands for the unique irreducible a-dimensional representation of
SLp2,Cq. This can be seen in [11, Theorem 1.3.1] and, for the unitary case,
we refer reader to [4, Sections 7, 8]. Details about the compatibility of the
ε-functions can be found in [19].

Basic building blocks in the Mœglin-Tadić classification of discrete series
are the strongly positive representations. An irreducible representation σ P
RpGq is called strongly positive if for every embedding

σ ãÑ νs1ρ1 ˆ ν
s2ρ2 ˆ ¨ ¨ ¨ ˆ ν

skρk ¸ σcusp,

where ρi P RpGLpnρi , F
1qq, i “ 1, 2, . . . , k, are irreducible cuspidal unitary

representations and σcusp P RpGq is an irreducible cuspidal representation,
we have si ą 0 for each i. By the classification, they are parametrized by the
admissible triples of alternated type. This implies that εσppx , ρq, px, ρqq “
´1 for all x P Jordρ.

Suppose that σsp is a strongly positive discrete series such that every
element of its cuspidal support belongs to the set tνxρ, σc : x P Ru. By
[8, Theorem 1.2], which also covers the classical group case, we have the
following description of σsp: If ρ is not F 1{F -selfdual or ρ ¸ σc reduces, we
have σsp – σc. If ρ is F 1{F -selfdual and ναρ¸σc reduces for α ą 0, then there
are a1, a2, . . . , arαs, where rαs denotes the smallest integer which is not smaller
than α, such that ´1 ă a1 ă a2 ă ¨ ¨ ¨ ă arαs, ai ´ α P Z for i “ 1, 2, . . . , rαs,
a1 ě α ´ rαs, and σsp is a unique irreducible subrepresentation of

δprνα´rαs`1ρ, νa1ρsq ˆ δprνα´rαs`2ρ, νa2ρsq ˆ ¨ ¨ ¨ ˆ δprναρ, νarαsρsq ¸ σc.

Also, if ai ě α ´ rαs` i, then 2ai ` 1 P Jordρpσspq.
This directly implies the following result:
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Lemma 2.1. Let ρ P RpGLq denote an irreducible F 1{F -selfdual cuspidal
representation such that ναρ¸σc reduces for α ą 0. Suppose that σsp P RpGq
is a strongly positive discrete series such that every element of its cuspidal
support belongs to the set tνxρ, σc : x P Ru. Let k denote a positive integer,
k ď rαs, and suppose that there is an x P R such that νxρ appears exactly k

times in the cuspidal support of σsp. We denote the largest such x by x
pkq
max.

Then 2x
pkq
max ` 1 P Jordρpσspq.

We frequently use the following immediate consequence of the discrete
series classification, which can also be deduced from [14, Section 2]:

Lemma 2.2. Let σ P RpGq denote a discrete series such that every element
of its cuspidal support belongs to the set tνxρ, σc : x P Ru, for an irreducible
F 1{F -selfdual cuspidal representation ρ P RpGLq. Then there exists a non-
negative integer m and an ordered pm`1q-tuple pσ1, σ2, . . . , σm`1q of discrete
series representations in RpGq such that

1. σ – σ1,

2. σm`1 is strongly positive,

3. for i P t1, 2, . . . ,mu there are xi, yi P Jordρpσiq such that pyiq “ xi, yi is
the minimal y P Jordρpσiq such that y is defined and εσippy , ρq, py, ρqq “

1, and σi is a subrepresentation of δprν´
xi´1

2 ρ, ν
yi´1

2 ρsq ¸ σi`1.

Let us provide a technical result which happens to be particularly useful
in our investigation.

Proposition 2.3. Let σ P RpGq denote a discrete series representation
such that every representation of the general linear group appearing in its
cuspidal support is the twist of the same irreducible F 1{F -selfdual cuspi-
dal representation ρ. Let us denote the partial cuspidal support of σ by
σc, and suppose that ναρ ¸ σc reduces for α ą 0. To σ we attach an or-
dered pm ` 1q-tuple pσ1, σ2, . . . , σm`1q of discrete series representations as
in Lemma 2.2, and let xi, yi P Jordρpσiq be such that xi “ pyiq and σi

is a subrepresentation of δprν´
xi´1

2 ρ, ν
yi´1

2 ρsq ¸ σi`1, for i “ 1, . . . ,m. Let
k1 “ |ti : 1 ď i ď m, xi´1

2
ě αu| and k2 “ |tj : 1 ď j ď m,

yj´1

2
ě αu|. Let

z1, z2, . . . , zrαs be such that σm`1 is a unique irreducible subrepresentation of

δprνα´rαs`1ρ, νz1ρsq ˆ ¨ ¨ ¨ ˆ δprναρ, νzrαsρsq ¸ σc, (3)

and let k3 “ |ti : 1 ď i ď rαs, zi ě αu|. Then k1 ` k2 ` k3 ě 2m.
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Proof. We note that it follows from [12, Théorème 3.1.1] and [5, Theorem 7.8]
that 2α is an integer.

Since xi´1
2
ě 0 and xi´1

2
´ α P Z for all i “ 1, 2, . . . ,m, if α “ 1

2
we

have k1 ` k2 “ 2m. Thus, we can assume that α ě 1. If σm`1 – σc, using
a description of Jordρpσcq and xi R Jordρpσcq for i “ 1, 2, . . . ,m, we obtain
that xi´1

2
ě α for i “ 1, 2, . . . , n. This again gives k1 ` k2 “ 2m.

It remains to consider the case of non-cuspidal σm`1. Let S stand for
the set tx1´1

2
, . . . , xm´1

2
, y1´1

2
, . . . , ym´1

2
, z1, . . . , zrαsu. Since the sets tx1´1

2
, . . .,

xm´1
2
u, ty1´1

2
, . . . , ym´1

2
u, and tz1, . . . , zrαsu are mutually disjoint and for x P S

we have x´ α P Z, it follows that there are at most tαu elements in S which
are smaller than α, where tαu stands for the largest integer which is not larger
than α. If k1 ` k2 “ 2m, there is nothing to prove.

Suppose that k1 ` k2 ă 2m and let l “ 2m ´ k1 ´ k2. Let us denote by
xmin the smallest element of the set tx1´1

2
, . . . , xm´1

2
u. Note that xmin ă α

and 2xmin`1 R Jordρpσm`1q. This implies that zrxmins`1 ě α´ rαs`xmin`1,
so zj ě α ´ rαs ` j for j “ xmin ` 1, xmin ` 2, . . . , rαs, i.e., at least α ´ xmin

segments appearing in (3) are nonempty.
Since l elements of tx1´1

2
, . . . , xm´1

2
, y1´1

2
, . . . , ym´1

2
u are less than α, and

the smallest one of them equals xmin, at most tαu ´ l ´ xmin elements of
tzrxmins`1, . . . , zrαsu can be less than α. Consequently, at least

rαs´ xmin ´ ptαu´ l ´ xminq “ rαs´ tαu` l

elements of tzxm`1, . . . , zrαsu are greater than or equal to α. Using rαs´tαu ě

0 we deduce that k3 ě l, so k1 ` k2 ` k3 ě 2m and the proposition is
proved.

In the rest of the paper, we fix a real number a, and non-negative integers
k and n. By Spa, k, n, ρq we denote the essentially Speh representation

Lpδprνaρ, νa`kρsq, δprνa`1ρ, νa`k`1ρsq, . . . , δprνa`n´1ρ, νa`k`n´1ρsqq.

We take a moment to explicitly state the formula for the Jacquet modules
of Spa, k, n, ρq ¸ σc, which present our main tool for the investigation of
discrete series subquotients. It is completely based on the Tadić’s structural
formula ([17, Theorem 5.4]) and a description of the Jacquet modules of a
ladder representation ([7, Theorem 2.1]). Let LadpSpa, k, n, ρqq denote the
set of all ordered n-tuples px1, x2, . . . , xnq of real numbers such that xi ă xi`1
for i “ 1, 2, . . . , n ´ 1, xi ´ a P Z and a ` i ´ 2 ď xi ď a ` k ` i ´ 1 for
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i “ 1, 2, . . . , n. Let LadpSpa, k, n, ρqq1 stand for the set of all ordered pairs
ppx1, . . . , xnq, py1, . . . , ynqq P LadpSpa, k, n, ρqq ˆ LadpSpa, k, n, ρqq such that
xi ď yi for i “ 1, 2, . . . , n. Suppose that ρ is F 1{F -selfdual. We have

µ˚pSpa, k, n, ρq ¸ σcq “ (4)
ÿ

LadpSpa,k,n,ρqq1

Lpδprν´xnρ, ν´a´n`1ρsq, . . . , δprν´x1ρ, ν´aρsqqˆ

Lpδprνy1`1ρ, νa`kρsq, . . . , δprνyn`1ρ, νa`k`n´1ρsqqb

Lpδprνx1`1ρ, νy1ρsq, . . . , δprνxn`1ρ, νynρsqq ¸ σc.

3 Discrete series

By the Mœglin-Tadić classification, if Spa, k, n, ρq ¸ σc contains a discrete
series then ρ is F 1{F -selfdual. Thus, in what follows we assume that ρ is
F 1{F -selfdual and denote by α a unique non-negative real number such that
ναρ¸ σc reduces.

Again, by the Mœglin-Tadić classification, we can assume that a ´ α is
an integer.

If both a ` k ď 0 and a ` n ´ 1 ě 0, then µ˚pSpa, k, n, ρq ¸ σcq does
not contain an irreducible constituent of the form νxρ b π for x ą 0, so
Spa, k, n, ρq ¸ σc does not contain a discrete series subquotient, since this
would contradict the square-integrability criterion. Thus, a ` k ą 0 or a `
n´ 1 ă 0. Since in the appropriate Grothendieck group we have

ČSpa, k, n, ρq ¸ σc “ Sp´a´ k ´ n` 1, k, n, ρq ¸ σc, (5)

we can assume that a` k ą 0.
In the case a ą 0, a complete description of the composition series of

Spa, k, n, ρq¸σc is a special case of the results of the first author, given in [3].
In particular, if a ą 0, then a discrete series subquotient of Spa, k, n, ρq ¸ σc
has to be strongly positive, and the following result is a consequence of [3,
Theorem 3.1]:

Proposition 3.1. If a ą 0, then Spa, k, n, ρq ¸ σc contains a discrete series
subquotient if and only if α ą 0 and a ` n ´ 1 “ α. Furthermore, if a ą 0,
α ą 0 and a ` n ´ 1 “ α, then Spa, k, n, ρq ¸ σc contains a unique discrete
series subquotient, which appears with multiplicity one, and is also the unique
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irreducible subrepresentation of both Spa, k, n, ρq ¸ σc and δprνaρ, νa`kρsq ˆ
¨ ¨ ¨ ˆ δprναρ, νa`k`n´1ρsq ¸ σc.

In what follows, we discuss the case a ď 0.

Proposition 3.2. Suppose that a ` k ą 0, a ď 0, and a ` n ´ 1 ą 0. If
Spa, k, n, ρq¸σc contains a discrete series subquotient, then α ą 0, a´α P Z,
´k

2
ă a and a` n´ 1 “ α.

Proof. Suppose that Spa, k, n, ρq ¸ σc contains a discrete series subquotient
σds. We have already seen that a ´ α P Z. Since a ď 0 and a ` k ą 0,
the cuspidal support of σds either contains ρ, or contains ν

1
2ρ at least twice.

Thus, σds is not a strongly positive discrete series. We attach to σds an
ordered pm` 1q-tuple of discrete series representations pσ1, σ2, . . . , σm`1q as
in Lemma 2.2.

If α P Z, then ρ appears m times in the cuspidal support of σds, so
m “ ´a ` 1. If α R Z, then ν

1
2ρ appears 2r´as ` 1 times in the cuspidal

support of Spa, k, n, ρq ¸ σc. Since ν
1
2ρ appears at most once in the cuspidal

support of σm`1, in this case we get m “ r´as. Now it can be directly seen
that in both cases holds m “ r´a` 1

2
s.

Since µ˚pSpa, k, n, ρq¸σcq contains an irreducible constituent of the form
νxρb π, x ą 0, only for x “ a` k, it follows that y1 “ 2pa` kq ` 1. Also, it
directly follows that for y P Jordρpσdsq such that y ‰ y1 and y is defined we
have εσdsppy , ρq, py, ρqq “ ´1.

If y2 ‰ y1`2, using an embedding σ2 ãÑ ν
y2´1

2 ρˆδprν´
x2´1

2 ρ, ν
y2´3

2 ρsq¸σ3
and a simple commuting argument, we obtain that σds is a subrepresentation

of an induced representation of the form ν
y2´1

2 ρ ¸ π. Now the Frobenius

reciprocity implies µ˚pSpa, k, n, ρq ¸ σcq ě ν
y2´1

2 ρ b π, which is impossible.
Thus, y2 “ y1` 2, and repeating the same arguments we deduce that yi`1 “
yi ` 2 for all i “ 1, 2, . . . ,m´ 1.

It follows at once that for i “ 1, 2, . . . ,m´ 1 we have xi ě xi`1` 2. If for
some i P t1, 2, . . . ,m´1u we have xi ‰ xi`1`2, [18, Lemma 8.1] implies that

µ˚pσdsq contains an irreducible constituent of the form ν
xi´1

2 ρ b π, which is
impossible. Thus, for i “ 1, 2, . . . ,m´ 1 we have xi “ xi`1 ` 2.

Since for α P Z we have xm ě 1, it follows that x1 ě 2pm ´ 1q ` 1
and x1´1

2
ě ´a. Similarly, for α R Z we have xm ě 2, so it follows that

x1 ě 2pm ´ 1q ` 2 and x1´1
2
ě ´a. In any case, from y1 ą x1 we obtain

´a ă a` k, i.e. ´k
2
ă a.
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Using a` n´ 1 ą 0, and inspecting the cuspidal support of σds, we con-
clude thatm ă n, so ym´1

2
“ a`k`m´1 ă a`k`n´1 implies that νa`k`n´1ρ

appears in the cuspidal support of σm`1, so σm`1 is a non-cuspidal strongly
positive discrete series. Consequently, from the classification of strongly pos-
itive discrete series follows α ą 0 and 2pa ` k ` n ´ 1q ` 1 P Jordρpσm`1q.
Thus, there is an y P Jordρpσmq such that in Jordρpσmq we have y “ ym. If
xm ‰ minpJordρpσmqq, there is a x P Jordρpσmq such that pxmq “ x. Since
x, y P Jordρpσm`1q and σm`1 corresponds to an admissible triple of the alter-
nated type, we have εσm`1ppx, ρq, py, ρqq “ ´1. Using εσmppxm, ρq, pym, ρqq “ 1
and (1), we obtain

εσmppx, ρq, pxm, ρqq ¨ εσmppym, ρq, py, ρqq “ ´1,

so we have either εσmppx, ρq, pxm, ρqq “ εσdsppx, ρq, pxm, ρqq “ 1 or εσmppym, ρq,
py, ρqq “ εσdsppym, ρq, py, ρqq “ 1. Since y1 R Jordρpσmq, we have noted earlier
that both of these equalities must be equal to ´1, and we obtain xm “

minpJordρpσmqq. If xm ą 2, [18, Lemma 8.1] implies that µ˚pσdsq contains

an irreducible constituent of the form ν
xm´1

2 ρb π, which is impossible. This
implies that for i “ 1, 2, . . . ,m we have xi “ ´2a`1´2pi´1q “ ´2pa`iq`3.

Let a1, a2, . . . , arαs be such that σm`1 is a unique irreducible subrepresen-
tation of

δprνα´rαs`1ρ, νa1ρsq ˆ δprνα´rαs`2ρ, νa2ρsq ˆ ¨ ¨ ¨ ˆ δprναρ, νarαsρsq ¸ σc.

We have noted that νa`k`n´1ρ appears in the cuspidal support of σm`1, so
arαs “ a` k`n´ 1. Also, since να´rαs`1ρ appears in the cuspidal support of
σm`1, we have a1 ě α´rαs`1. Thus, 2ai`1 P Jordρpσdsq for i “ 1, 2, . . . , rαs.

Since in Jordρpσmq we have pymq “ xm and xm “ minpJordρpσmqq, in
Jordρpσdsq we have p2a1 ` 1q “ ym. In the same way as in the first part of
the proof we deduce that ym “ 2a1 ´ 1 and that for i “ 1, 2, . . . , rαs we have
ai`1 “ ai ` 1.

Using embeddings σi ãÑ δprν´
xi´1

2 ρ, ν
yi´1

2 ρsq¸σi`1 for i “ 1, 2, . . . ,m and
the Frobenius reciprocity, we get that the Jacquet module of σds with respect
to the appropriate parabolic subgroup contains an irreducible representation
of the form

ν
y1´1

2 ρb ν
y2´1

2 ρb ¨ ¨ ¨ b ν
ym´1

2 ρb νa1ρb νa2ρb ¨ ¨ ¨ b νarαsρb π “

νa`kρb νa`k`1ρb ¨ ¨ ¨ b νa`k`m´1ρb νa`k`mρb ¨ ¨ ¨ b νa`k`n´1ρb π.
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It follows that rαs “ a`k`n´1´pa`k`mq`1 “ n´m, so n “ rαs`m.
Using m “ r´a` 1

2
s we deduce

a` n´ 1 “ a` rαs`m´ 1 “ a` rαs`

R

´ a`
1

2

V

´ 1.

If a P Z, then α P Z, so rαs “ α, r´a ` 1
2
s “ ´a ` 1 and a ` n ´ 1 “

a ` α ´ a ` 1 ´ 1 “ α. If a R Z, then α R Z, 2a, 2α P Z, so rαs “ α ` 1
2
,

r´a` 1
2
s “ ´a` 1

2
. Thus, we again have a`n´1 “ a`α` 1

2
´a` 1

2
´1 “ α.

This ends the proof.

Theorem 3.3. Suppose that a ` k ą 0, a ď 0, and a ` n ´ 1 ą 0. Then
Spa, k, n, ρq ¸ σc contains a discrete series subquotient if and only if α ą 0,
a´ α P Z, ´k

2
ă a and a` n´ 1 “ α.

Proof. The necessity part of the proof follows from the previous proposition.
Let us now assume that α ą 0, a ´ α P Z, ´k

2
ă a and a ` n ´ 1 “ α.

Let l “ r´a ` 1
2
s and note that then we have a ` l ą 0, a ´ l ď 0, and

a` l “ α´ rαs`1. We denote by σ1 the unique irreducible subrepresentation
of

δprνa`lρ, νa`k`lρsq ˆ δprνa`l`1ρ, νa`k`l`2ρsq ˆ ¨ ¨ ¨ ˆ

ˆδprνa`n´1ρ, νa`k`n´1ρsq ¸ σc “

δprνα´rαs`1ρ, νa`k`lρsq ˆ δprνα´rαs`2ρ, νa`k`l`1ρsq ˆ ¨ ¨ ¨ ˆ

ˆδprναρ, νa`k`n´1ρsq ¸ σc.

Note that σ1 is strongly positive. Since Spa` l, k, n´ l, ρq¸σc is a subrepre-
sentation of the induced representation above, it also has a unique irreducible
subrepresentation which is isomorphic to σ1.

We inductively define discrete series representations σ2, σ3, . . . , σl`1 such
that, for i “ 2, 3, . . . , l ` 1, σi is a unique irreducible subrepresentation of

δprνa`l´i`1ρ, νa`k`l´i`1ρsq ¸ σi´1

such that εσipp2pa` k ` l ´ i` 1q ` 1, ρq, p2pa` k ` l ´ i` 1q ` 3, ρqq “ ´1.
Since σ2 is a subrepresentation of δprνa`l´1ρ, νa`k`l´1ρsq¸σ1 and we have

minpJordρpσ2qq “ 2p´a´l`1q`1, it directly follows that εσ2ppx , ρq, px, ρqq “
1 only for x “ 2pa`k`l´1q`1, and µ˚pσ2q contains an irreducible constituent
of the form νa`k`l´1ρ b π, by [18, Proposition 7.2]. If µ˚pσ2q contains an
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irreducible constituent of the form νxρbπ for x ą a`k`l´1, using p2x`1q “
2x´ 1 and [18, Proposition 7.2] we deduce εσ2pp2x´ 1, ρq, p2x` 1, ρqq “ 1, a
contradiction.

If a R Z, then a` l “ 1
2
, and using εσ2pp2, ρq, p2pa` k` l´ 1q` 1, ρqq “ 1,

εσ2p2pa`k`l´1q`1, ρq, p2pa`k`l´1q`3, ρqq “ ´1, εσ1p2pa`k`l´1q`3, ρq “
1, and the property (2) of the ε-function, we obtain εσ2p2, ρq “ ´1. This
implies that µ˚pσ2q does not contain an irreducible constituent of the form

ν
1
2ρb π, since otherwise [18, Proposition 7.4] would imply εσ2p2, ρq “ 1.

Thus, the ε-function εσ2 is completely determined and if µ˚pσ2q contains
an irreducible constituent of the form νxρb π, then x “ a` k ` l ´ 1.

In a similar way, for i ě 3, using the property (1) of the ε-function,
εσipp2p´a´ l` i´1q`1, ρq, p2pa`k` l´ i`1q`1, ρqq “ 1, εσipp2pa`k` l´
i` 1q` 1, ρq, p2pa` k` l´ i` 1q` 3, ρqq “ ´1, and εσi´1

pp2p´a´ l` i´ 2q`
1, ρq, p2pa ` k ` l ´ i ` 1q ` 3, ρqq “ 1, we obtain that εσippx , ρq, px, ρqq “ 1
only for x “ 2pa ` k ` l ´ i ` 1q ` 1. Consequently, for i ě 3, εσi is
completely determined and µ˚pσiq contains an irreducible constituent of the
form νa`k`l´i`1ρb π.

Since µ˚pσ2q does not contain an irreducible constituent of the form ν
1
2ρb

π, we get that µ˚pσiq also does not contain an irreducible constituent of such
a form.

If µ˚pσiq contains an irreducible constituent of the form νxρ b π for x R
t1
2
, a ` k ` l ´ i ` 1u, using 2x ` 1, 2x ´ 1 P Jordρpσiq, together with [18,

Proposition 7.2], we obtain εσipp2x´1, ρq, p2x`1, ρqq “ 1, which is impossible.
Consequently, if µ˚pσiq contains an irreducible constituent of the form

νxρb π, then x “ a` k ` l ´ i` 1.
We inductively prove that, for i “ 1, 2, . . . , l`1, σi is a subrepresentation

of Spa ` l ´ i ` 1, k, n ´ l ` i ´ 1, ρq ¸ σc. We have already seen that this
holds for i “ 1. Suppose that i P t2, 3, . . . , lu and that for j “ 1, 2, . . . , i we
have σj ãÑ Spa ` l ´ j ` 1, k, n ´ l ` j ´ 1, ρq ¸ σc. Let us prove that σi`1
embeds into Spa` l ´ i, k, n´ l ` i, ρq ¸ σc.

From embeddings

σi`1 ãÑ δprνa`l´iρ, νa`k`l´iρsq ¸ σi

ãÑ δprνa`l´iρ, νa`k`l´iρsq ˆ Spa` l ´ i` 1, k, n´ l ` i´ 1, ρq ¸ σc,

using [6, Lemma 5.5], whose proof carries directly to the unitary group case,
we deduce that there is an irreducible subquotient π1 of δprνa`l´iρ, νa`k`l´iρsqˆ
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Spa ` l ´ i ` 1, k, n ´ l ` i ´ 1, ρq such that σi`1 embeds into π1 ¸ σc. Let
π1 – Lpδ1, δ2, . . . , δmq where δj – δprνxjρ, νyjρsq for j “ 1, 2, . . . ,m.

Since π1 embeds into an induced representation of the form νy1ρ ¸ π, it
follows at once that y1 “ a`k` l´ i. If x1 ‰ a` l´ i, since for every x such
that νxρ appears in the cuspidal support of π1, we have x ě a` l´ i there is
a j P t2, 3, . . . ,mu such that xj “ a` l´ i. For j1 P t1, 2, . . . , j ´ 1u we have
xj1 ą xj, since νa`l´iρ appears in the cuspidal support of π1 with multiplicity
one, and epδj1q ď epδjq, which implies yj1 ă yj. Thus, for j1 P t1, 2, . . . , j´ 1u
we have δj1 ˆ δj – δj ˆ δj1 , and a simple commuting argument implies that
σi`1 is a subrepresentation of an induced representation of the form νyjρ¸π,
which is impossible since yj ą y1 “ a`k` l´ i. Consequently, x1 “ a` l´ i,
and π1 is an irreducible subrepresentation of

δprνa`l´iρ, νa`k`l´iρsq ˆ Lpδ2, δ3, . . . , δmq.

Thus, m˚pπ1q contains δprνa`l´iρ, νa`k`l´iρsq b Lpδ2, δ3, . . . , δmq. It can be
easily seen that δprνa`l´iρ, νa`k`l´iρsq b Spa` l´ i` 1, k, n´ l` i´ 1, ρq is
a unique irreducible constituent of

m˚
pδprνa`l´iρ, νa`k`l´iρsq ˆ Spa` l ´ i` 1, k, n´ l ` i´ 1, ρqq

of the form δprνa`l´iρ, νa`k`l´iρsq b π.
Thus, π1 is an irreducible subrepresentation of δprνa`l´iρ, νa`k`l´iρsq ˆ

Spa` l´ i` 1, k, n´ l` i´ 1, ρq, so π1 – Spa` l´ i, k, n´ l` i, ρq. For i “ l
we obtain that σl`1 is a subrepresentation of Spa, k, n, ρq¸σc. This ends the
proof.

Proposition 3.4. Suppose that a`k ą 0, a ď 0, a`n´1 “ α, and ´k
2
ă a.

Let

Jord “ Jordpσcqztpx, ρq : px, ρq P JordpσcquY

tp2pa` k ` iq ` 1, ρq : i “ 0, 1, . . . , n´ 1uY

tp2i` 1, ρq : i “ α ´ rαs` 1, α´ rαs` 2, . . . ,´au.

We define an admissible triple pJord, σc, εq with εpp2p´aq ` 1, ρq, p2pa` kq `
1, ρqq “ 1 and εppx , ρ1q, px, ρ1qq “ ´1 for px, ρ1q P Jord such that x is
defined and px, ρ1q ‰ p2pa` kq ` 1, ρq. Also, for ρ1 P RpGLq such that Jordρ1
is non-empty and consists of even integers, let εpminpJordρ1q, ρ

1q “ ´1. Let
σ1 stand for a discrete series corresponding to pJord, σc, εq. Then σ1 is a
subrepresentation of Spa, k, n, ρq ¸ σc. If σ is a discrete series subquotient of
Spa, k, n, ρq ¸ σc, then σ – σ1.
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Proof. It can be directly verified that pJord, σc, εq is an admissible triple. In
the proof of Theorem 3.3 we have constructed a discrete series subrepresen-
tation of Spa, k, n, ρq ¸ σc which corresponds to pJord, σc, εq.

Let us denote by σ a discrete series subquotient of Spa, k, n, ρq ¸ σc. Ob-
viously, σcusp – σc and σ is not strongly positive. Using cuspidal support
considerations, as in [13, Section 8], we directly obtain Jordpσq “ Jord.
Using (4) we obtain that µ˚pSpa, k, n, ρq ¸ σcq contains an irreducible con-
stituent of the form νxρ b π, with x ą 0, only for x “ a ` k. From [18,
Propositions 7.2, 7.4] we deduce εσ “ ε.

Let us now consider the remaining case, where a ` k ą 0, a ď 0, and
a` n´ 1 ď 0. Equality (5) enables us to assume a` k ` n´ 1 ě ´a.

Proposition 3.5. Suppose a ` k ą 0, a ď 0, and a ` n ´ 1 ď 0. If
Spa, k, n, ρq ¸ σc contains a discrete series subquotient, then ´k

2
ă a.

Proof. Let us suppose that Spa, k, n, ρq¸σc contains a discrete series subquo-
tient and ´k

2
ě a i.e., ´a ě a` k. Let us fix a discrete series subquotient of

Spa, k, n, ρq ¸ σc and denote it by σds. To σds we attach an ordered pm` 1q-
tuple of discrete series representations pσ1, σ2, . . . , σm`1q as in Lemma 2.2.
This leads to yi ă yi`1 for i “ 1, 2, . . . ,m´1. Using the Frobenius reciprocity
we deduce that the Jacquet module of σds with respect to the appropriate
parabolic subgroup contains an irreducible constituent of the form

ν
y1´1

2 ρb ν
y2´1

2 ρb ¨ ¨ ¨ b ν
ym´1

2 ρb π.

If a P Z, then ρ appears n times in the cuspidal support of Spa, k, n, ρq¸σc
and, since ρ does not appear in the cuspidal support of σm`1, ρ appears m
times in the cuspidal support of σds.

If a R Z, note that ν
1
2ρ appears 2n times in the cuspidal support of

Spa, k, n, ρq¸σc and, since ν
1
2ρ appears at most once in the cuspidal support

of σm`1, ν
1
2ρ appears either 2m or 2m ` 1 times in the cuspidal support of

σds. Since σds is an irreducible subquotient of Spa, k, n, ρq ¸ σc, we conclude
2m “ 2n, i.e., m “ n.

Several possibilities are studied separately.
Let us first consider the case y1 “ 2pa ` kq ` 1 and yi`1 “ yi ` 2 for

i “ 1, . . . , n ´ 1. This gives xi`1 ď xi ´ 2 for i “ 1, . . . , n ´ 1. Also,
yn “ 2pa ` k ` n ´ 1q ` 1 and there is a j P t1, . . . , nu such that yj “
2p´aq ` 1, so x1 ă 2p´aq ` 1. Thus, the cuspidal support of σn`1 equals
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rν
x1`1

2 ρ, ν´aρs Y rν
x2`1

2 ρ, ν´a´1ρs Y ¨ ¨ ¨ Y rν
xn`1

2 ρ, ν´a´n`1ρs Y tσcu, so ν´aρ
appears in the cuspidal support of σn`1 with multiplicity one, and for an x
such that νxρ appears in the cuspidal support of σn`1 we have x ď ´a. Now
Lemma 2.1 implies 2p´aq ` 1 P Jordρpσn`1q, a contradiction.

Let us now assume that y1 “ 2p´a ´ n ` 1q ` 1 and yi`1 “ yi ` 2 for
i “ 1, . . . , n´ 1. Note that yn “ 2p´aq ` 1. It follows that xi ě xi`1 ` 2 for
i “ 1, . . . , n´ 1 and xi ă y1 for i “ 1, . . . , n. If there is an i P t1, . . . , n´ 1u
such that xi ą xi`1 ` 2, then [18, Lemma 8.1] implies that µ˚pσdsq contains

an irreducible constituent of the form ν
xi´1

2 ρb π, so xi “ 2pa` kq ` 1 which
is impossible since ´a ě a ` k ě ´a ´ n ` 1 implies that yj “ 2pa ` kq ` 1
for some j P t1, . . . , nu. Thus, xi “ xi`1 ` 2 for i “ 1, . . . , n ´ 1, and

the cuspidal support of σn`1 equals rν
xn`1

2 ρ, νa`kρs Y rν
xn´1`1

2 ρ, νa`k`1ρs Y

¨ ¨ ¨ Y rν
x1`1

2 ρ, νa`k`n´1ρs Y tσcu. It follows that ν´aρ appears 2a ` k ` n
times in the cuspidal support of σn`1, since it appears in the segments

rν
x2a`k`n`1

2 ρ, ν´aρs, rν
x2a`k`n´1`1

2 ρ, ν´a`1ρs, . . ., rν
x1`1

2 ρ, νa`k`n´1ρs. Also, if
z ą ´a, then νzρ can appear at most 2a ` k ` n ´ 1 times in the cuspi-

dal support of σn`1, since it can appear only in the segments rν
x2a`k`n´1`1

2 ρ,

ν´a`1ρs, . . ., rν
x1`1

2 ρ, νa`k`n´1ρs. Lemma 2.1 implies 2p´aq`1 P Jordρpσn`1q,
a contradiction.

Finally, let us assume that there is an r P t1, . . . , n ´ 1u such that y1 “
2p´a ´ n ` 1q ` 1, y2 “ 2p´a ´ n ` 2q ` 1, . . ., yr “ 2p´a ´ n ` rq ` 1,
yr`1 “ 2pa`kq` 1, yr`2 “ 2pa`k` 1q` 1, . . ., yn “ 2pa`k`n´ r´ 1q` 1.
This implies ´a ´ n ` r ă a ` k, so ´a ă a ` k ` n ´ r, and there is a
j P tr ` 1, . . . , nu such that yj “ 2p´aq ` 1. Note that we have

xr ă . . . ă x1 ă y1 “ 2p´a´ n` 1q ` 1 ă yr`1 “ 2pa` kq ` 1 ď 2p´aq ` 1.

The cuspidal support of σn`1 equals

rν
x1`1

2 ρ, νa`k`n´1ρs Y rν
x2`1

2 ρ, νa`k`n´2ρs Y ¨ ¨ ¨ Y rν
xr`1

2 ρ, νa`k`n´rρsY

rν
xr`1`1

2 ρ, ν´aρs Y rν
xr`2`1

2 ρ, ν´a´1ρs Y ¨ ¨ ¨ Y rν
xn`1

2 ρ, ν´a´n`r`1ρs Y tσcu.

Observe that ν´aρ appears r ` 1 times in the cuspidal support of σn`1,

since it appears in the segment rν
xr`1`1

2 ρ, ν´aρs and in the segments rν
xr`1

2 ρ,

νa`k`n´rρs, . . ., rν
x1`1

2 ρ, νa`k`nρs, since xi ă 2p´aq ` 1 for i “ 1, . . . , r. On
the other hand, if z ą ´a, then νzρ can appear at most r times in the cuspidal

support of σn`1, since it does not appear in the segments rν
xr`1`1

2 ρ, ν´aρs, . . .,
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rν
xn`1

2 ρ, ν´a´n`r`1ρs, and it can appear at most once in each of the segments

rν
xr`1

2 ρ, νa`k`n´rρs, . . ., rν
x1`1

2 ρ, νa`k`nρs. Lemma 2.1 implies 2p´aq ` 1 P
Jordρpσn`1q, a contradiction.

Theorem 3.6. If a` k ą 0, a ď 0, and a`n´ 1 ď 0, then Spa, k, n, ρq¸σc
contains a discrete series subquotient if and only if ´k

2
ă a and a` n´ 1 ď

´α.

Proof. Let us first suppose that Spa, k, n, ρq ¸ σc contains a discrete series
subquotient σds, a` k ą 0, a ď 0, and a`n´ 1 ď 0. Proposition 3.5 implies
´k

2
ă a. If α “ 0 we obviously have a ` n ´ 1 ď ´α, so we can assume

that α ą 0. To σds we attach an ordered pm` 1q-tuple pσ1, σ2, . . . , σm`1q of
discrete series representations as in Lemma 2.2. In the proof of Proposition
3.5 we have seen that m “ n. Thus, from the Proposition 2.3 follows that
ναρ appears in the cuspidal support of σds at least 2n times. Equality of
the cuspidal supports of σds and Spa, k, n, ρq ¸ σc implies that for every
i P t0, 1, . . . , n ´ 1u the segment rνa`iρ, νa`k`iρs contains both α and ´α,
which implies a` n´ 1 ď ´α.

Conversely, suppose that ´k
2
ă a and a` n´ 1 ď ´α. By the classifica-

tion of discrete series, the induced representation δprνa`n´1ρ, νa`k`n´1ρsq¸σc
contains two mutually non-isomorphic discrete series subrepresentations. We
fix one of them, denote it by σ1, and inductively define discrete series rep-
resentations σ2, σ3, . . . , σn where, for i “ 2, 3, . . . , n, σi is a discrete series
subrepresentation of

δprνa`n´iρ, νa`k`n´iρsq ¸ σi´1

such that εσipp2pa` k ` n´ iq ` 1, ρq, p2pa` k ` n´ iq ` 3, ρqq “ ´1.
We inductively prove that, for i “ 1, 2, . . . , n, σi is a subrepresentation

of Spa ` n ´ i, k, i, ρq ¸ σc. This obviously holds for i “ 1. Suppose that
i P t2, 3, . . . , n ´ 1u and that for j “ 1, 2, . . . , i we have σj ãÑ Spa ` n ´
j, k, j, ρq ¸ σc.

We prove that σi`1 embeds into Spa`n´i´1, k, i`1, ρq¸σc. Using embed-
dings σi`1 ãÑ δprνa`n´i´1ρ, νa`k`n´i´1ρsq¸σi and σi ãÑ Spa`n´ i, k, i, ρq¸
σc, together with [6, Lemma 5.5], we get that there is an irreducible subquo-
tient π1 of δprνa`n´i´1ρ, νa`k`n´i´1ρsq ˆ Spa ` n ´ i, k, i, ρq such that σi`1
embeds into π1 ¸ σc. Let π1 – Lpδ1, δ2, . . . , δmq, where δj – δprνxjρ, νyjρsq
for j “ 1, 2, . . . ,m. It follows that

m˚
pδprνa`n´i´1ρ, νa`k`n´i´1ρsq ˆ Spa` n´ i, k, i, ρqq
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contains an irreducible constituent of the form νy1ρbπ, so y1 P ta`k`n´i´
1, a`k`n´iu. Since σi`1 embeds into an induced representation of the form
νy1ρ¸π1, using εσi`1

pp2pa`k`n´ i´1q`1, ρq, p2pa`k`n´ i´1q`3, ρqq “
´1 and [18, Proposition 7.2], we obtain y1 “ a ` k ` n ´ i ´ 1. Now,
following exactly the same lines as in the proof of Theorem 3.3, we deduce
π1 – Spa` n´ i´ 1, k, i` 1, ρq.

Consequently, σn is a subrepresentation of Spa, k, n, ρq ¸ σc.

Proposition 3.7. Suppose that a`k ą 0, a ď 0, a`n´1 ď ´α, and ´k
2
ă a.

Let Jord “ JordpσcqYtp2pa`k` iq`1, ρq, p2p´a´ iq`1, ρq : i “ 0, 1, . . . , n´
1u. We define two admissible triples pJord, σc, ε1q and pJord, σc, ε´1q with
ε˘1pp2p´aq`1, ρq, p2pa`kq`1, ρqq “ 1, ε˘1ppx , ρ

1q, px, ρ1qq “ ´1 for px, ρ1q P
Jord such that x is defined and px, ρ1q R tp2pa` kq ` 1, ρq, p2p´a´ n` 1q `
1, ρqu. Also, for j P t1,´1u let

• εjpp2α ´ 1, ρq, p2p´a´ n` 1q ` 1, ρqq “ j if α ě 1,

• εjp2p´a ´ n ` 1q ` 1, ρq “ j if α “ 1
2
, and εjp2, ρq “ ´1 if α ą 1

2
and

α R Z,

• εjp2pa` k ` n´ 1q ` 1, ρq “ j if α “ 0,

and let ε˘1pminpJordρ1q, ρ
1q “ ´1 for ρ1 P RpGLq such that Jordρ1 is non-

empty, consists of even integers, and ρ1 fl ρ. For j P t1,´1u, we denote by
σj discrete series corresponding to the admissible triple pJord, σc, εjq. Then
σ1 and σ´1 are subrepresentations of Spa, k, n, ρq¸σc. If σ is a discrete series
subquotient of Spa, k, n, ρq ¸ σc, then there is a j P t1,´1u such that σ – σj.

Proof. It can be directly seen that both triples pJord, σc, ε1q and pJord, σc, ε´1q
are admissible. In the proof of Theorem 3.6 we have constructed discrete se-
ries subrepresentations of Spa, k, n, ρq¸σc which correspond to pJord, σc, ε˘1q.

We note that Jordρpσcq “ H exactly when α P t0, 1
2
u.

Let σ be a discrete series subquotient of Spa, k, n, ρq ¸ σc. It is easy to
see that Jordpσq “ Jord, σcusp – σc, and that σ is not strongly positive.

By the formula (4), µ˚pSpa, k, n, ρq ¸ σcq contains an irreducible con-
stituent of the form νxρ1bπ only for px, ρ1q P tpa`k, ρq, p´a´n`1, ρqu. Us-
ing [18, Propositions 7.2, 7.4], we conclude that εσppx , ρ

1q, px, ρ1qq “ ´1 for
px, ρ1q P Jord such that x is defined and px, ρ1q R tp2pa`kq`1, ρq, p2p´a´n`
1q`1, ρqu, and that εσpminpJordρ1q, ρ

1q “ ´1 for ρ1 P RpGLq such that ρ1 fl ρ,
Jordρ1 is non-empty and consists of even integers. If additionally we have
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εσpp2p´aq ` 1, ρq, p2pa` kq ` 1, ρqq “ 1, it follows at once that εσ P tε1, ε´1u.
Since pJordpσq, εσ, σcq is not of the alternated type, in cases Jordρpσcq “ H
and εσpp2α´ 1, ρq, p2p´a´ n` 1q ` 1, ρqq “ ´1, for Jordρpσcq ‰ H, it easily
follows that εσpp2p´aq`1, ρq, p2pa`kq`1, ρqq “ 1. Namely, if Jordρpσcq “ H,
we have minpJordρq “ 2p´a ´ n ` 1q ` 1, so εσppx , ρq, px, ρqq “ 1 can hold
only for x “ 2pa` kq ` 1. In the second case, the ε-function εσ attains value
´1 on all pairs of the form ppx , ρ1q, px, ρ1qq for px, ρ1q ‰ p2pa` kq ` 1, ρq.

It remains to consider the case α ě 1 and εσpp2α´ 1, ρq, p2p´a´n` 1q`
1, ρqq “ 1. Let us show that then we have εσ “ ε1.

We denote by σ1 a discrete series such that σ embeds into δprν´α`1ρ,
ν´a´n`1ρsq ¸ σ1. If 2α ´ 1 ą minpJordρq, from εσpp2α ´ 3, ρq, p2α ´ 1, ρqq “
εσpp2p´a ´ n ` 1q ` 1, ρq, p2p´a ´ n ` 2q ` 1, ρqq “ ´1 and (1) implies
εσ1pp2α´3, ρq, p2p´a´n`2q`1, ρqq “ 1. Continuing in this way, we deduce
that there is a discrete series σ2 such that σ is a subrepresentation of

δprν´α`1ρ, ν´a´n`1ρsq ˆ ¨ ¨ ¨ ˆ δprν´α`mρ, ν´a´n`mρsq ¸ σ2, (6)

where m “ minttαu, nu. The Frobenius reciprocity implies that the Jacquet
module of σ with respect to the appropriate parabolic subgroup contains

δprν´α`1ρ, ν´a´n`1ρsq b δprν´α`2ρ, ν´a´n`2ρsq b ¨ ¨ ¨ b (7)

δprν´α`mρ, ν´a´n`mρsq b σ2.

Since σ is a subquotient of Spa, k, n, ρq ¸ σc, a repeated application of the
formula (4) implies that σ2 is an irreducible subquotient of

Lpδprνaρ, νa`kρsq, . . . , δprνa`n´m´1ρ, νa`k`n´m´1ρsq, (8)

δprνα´m`1ρ, νa`k`n´mρsq, . . . , δprναρ, νa`k`n´1ρsqq ¸ σc,

and that the multiplicity of (7) in the Jacquet module of Spa, k, n, ρq ¸ σc
with respect to the appropriate parabolic subgroup equals the multiplicity of
σ2 in (8).

If m “ n, it follows that σ2 is a discrete series subquotient of Spα ´ n`
1, k ` n´ 1, n, ρq ¸ σc, with α´ n` 1 ą 0. By Proposition 3.1, this induced
representation contains a unique discrete series subquotient, which appears
there with multiplicity one. Thus, the Jacquet module of Spa, k, n, ρq ¸
σc with respect to the appropriate parabolic subgroup contains a unique
constituent of the form (7), which appears with multiplicity one, and has to
appear in the Jacquet module of σ1 with respect to the appropriate parabolic
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subgroup since ε1pp2α ´ 1, ρq, p2p´a´ n` 1q ` 1, ρqq “ 1. Since both σ and
σ1 are subquotients of Spa, k, n, ρq ¸ σc, it follows that εσ “ ε1.

If m ă n, σ2 is a non-strongly positive discrete series subquotient of (8),
so µ˚pσ2q contains an irreducible constituent of the form δprνxρ1, νyρ1sq b π,
where x ď 0 and x ` y ą 0. Since m “ tαu, using (4) we deduce that
py, ρ1q “ pa`k, ρq. Thus, εσ2pp2p´aq` 1, ρq, p2pa`kq` 1, ρqq “ 1 and σ2 is a
subrepresentation of an induced representation of the form δprνaρ, νa`kρsq¸π.
Since a ă ´α ` 1 and a ` k ą ´a ´ n `m, embedding (6) can be used to
obtain that σ is also a subrepresentation of an induced representation of the
form δprνaρ, νa`kρsq¸π. This implies εσpp2p´aq`1, ρq, p2pa`kq`1, ρqq “ 1
so εσ “ ε1 and the proof follows.
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(4), 13 (1980), pp. 165–210.

22


