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Abstract

Let m denote an essentially Speh representation of the general lin-
ear group over a non-archimedean local field or its separable quadratic
extension, and let o, denote an irreducible cuspidal representation of
either symplectic, special odd-orthogonal, or unitary group. We de-
termine when the induced representation m x o, contains a discrete
series subquotient. We also identify all discrete series subquotients.

1 Introduction

Let F denote a non-archimedean local field F', and let F’ stand either for
F or for its separable quadratic extension. Let p denote an irreducible cus-
pidal representation of the general linear group over F’. For a real number
a, a non-negative integer k and a positive integer n, a unique irreducible
subrepresentation of the induced representation

(5([Vap, VaJrkp]) > (5([Va+1,0, Va+k+1p]> N, (5([I/a+n71p, Va+k+nflp])

is called the essentially Speh representation, and we denote by S(a, k,n, p).
We emphasize that representations of such a form play a fundamental role in
the identification of the unitary representations of the general linear group
([16, Theorem 7.5]).

Let us denote by o, an irreducible cuspidal representation of either sym-
plectic, special odd-orthogonal, or unitary group. Since the essentially Speh
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representations play a prominent role in the unitary dual of the general lin-
ear group, it is of particular interest to have a better understanding of the
composition factors of parabolically induced representation S(a, k, n, p) X 0.

Recently, a complete description of the composition series in the case
a > 3 has been given in [3]. We note that, although [3] deals with the
symplectic and special odd-orthogonal group, the unitary group case can be
handled in the exactly same way. There is still not much known about the
composition factors of an induced representation of the form S(a, k,n, p) x 0.
in the case a < % Our aim is to tackle this problem by determining the
existence of discrete series subquotients in a very concise way. Besides being
interesting by itself, the existence of such subquotients usually presents one
of the crucial steps towards the description of all irreducible composition
factors.

In the following theorem we summarize our main results.

Theorem 1.1. Let p denote an irreducible cuspidal representation of the
general linear group over a non-archimedean local field, and let o. stand
for an irreducible cuspidal representation of either symplectic, special odd-
orthogonal, or unitary group. Let a stand for a real number, let k denote
a non-negative integer, and let n stand for the positive one. If a + k < 0
and a+n—1 =0, the induced representation S(a, k,n, p) x o. does not con-
tain a discrete series subquotient. Otherwise we can assume that a + k > 0.
Then S(a, k,n,p) x o. contains a discrete series subquotient if and only if p
is F'/F-selfdual, for a unique non-negative o such that v*p x o, reduces we
have a — o € 7, —g <a, and either0 <a+4+n—1=aora+n—1<a.

Furthermore, if S(a,k,n,p) x 0. contains a discrete series subquotient,
then it contains a discrete series subrepresentation.

We note that in the case n = 1 analogous results have been obtained
in [14], while in the case k& = 0 and «a half-integral analogous results follow
from [9, Section 3]. Condition —% < @ makes a natural sense, since then
all representations §([v%p, v p]), ..., 6([v*T" 1p, vaTFm=1p]) have positive
central characters.

In Propositions 3.1, 3.4, and 3.7 we provide an explicit description of all
discrete series subquotients of S(a, k,n, p) x o.

In the following section we present some preliminaries, while in the third
section we obtain our main results, using a case-by-case consideration. Our
approach is based on the calculation of embeddings and Jacquet modules of

discrete series representations, using the Moaeglin-Tadi¢ classification, and



covers symplectic, special odd-orthogonal, and unitary groups over non-
archimedean local fields of arbitrary characteristic. In the case of symplectic
and special odd-orthogonal groups over a non-archimedean local field of char-
acteristic zero, it seems that analogous results could also be obtained using
the LLC approach to the classification of discrete series, given in [19].

This work has been supported in part by Croatian Science Foundation
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2 Preliminaries

Through the paper, we denote by F' a non-archimedean local field. We will
fix one of the following series {G,} of classical groups over F.

In the odd orthogonal group case, we fix an anisotropic orthogonal vector
space Yy over I of odd dimension and consider the Witt tower based on
Yy. For m such that 2n + 1 > dimY,, there is exactly one space V,, in the
tower of dimension 2n + 1. Let G, stand for the special orthogonal group
of this space. If V,, stands for the symplectic space of dimension 2n in the
corresponding Witt tower, we denote by G, the symplectic group of this
space. We also consider the unitary groups U(n, F'/F'), where F’ stands for
a separable quadratic extension of F'. There is also an anisotropic unitary
space Yy over F’, and the Witt tower of unitary spaces V,, based on Y. We
denote by G,, the unitary group of the space V,, of dimension either 2n + 1
or 2n.

We fix a minimal parabolic subgroup in G,, and consider only the stan-
dard parabolic subgroups with respect to this fixed minimal parabolic sub-
group. When working with the unitary groups, we let F’ denote a separable
quadratic extension of F', otherwise let F” denote F'. We fix one of the se-
ries {G,,} as above. For representations 6; of GL(n;, F'), i =1,2,...,k, and
representation 7 of G,s, we denote by d; x -+ x §; x 7 the representation
parabolically induced by 41 ®- - -®Jd, ®7. We use a similar notation to denote
a parabolically induced representation of GL(m, F”).

By Irr(G,,) we denote the set of all irreducible admissible representations
of G,. Let R(G,) denote the Grothendieck group of admissible representa-



tions of finite length of G,, and define R(G) = ®,>0R(G,). In a similar way
we define Irr(GL(n, F')) and R(GL) = ®,>0R(GL(n, F")).

Let n' be the Witt index of V,, if V,, is symplectic or even-unitary group,
and n/ = n — $(dimp (Yy) — 1) otherwise. For o € Irr(G,) and 0 < k < o/
we denote by r;)(c) the normalized Jacquet module of o with respect to the
parabolic subgroup P having the Levi subgroup equal to GL(k, F') x G,,_j.
We identify 7 (o) with its semisimplification in R(GL(k, F'))@R(G,—k) and
consider

po)=1®0 + Z rwy(0) € R(GL) ® R(G).
k=1

For 7 € Irr(GL(n, F')) we define m*(7) = >, _ (ru(7)) € R(GL) ®
R(GL), where 7 () denotes the normalized Jacquet module of 7 with re-
spect to the standard parabolic subgroup having the Levi factor equal to
GL(k,F') x GL(n — k, F"). We identify 7, () with its semisimplification,
and then extend m* linearly to the whole of R(GL).

We denote by v the composition of the determinant mapping with the
normalized absolute value on F’. Let p € R(GL) denote an irreducible cus-
pidal representation. By a segment we mean a set of the form [p,v™p] :=
{p,vp,...,v™p}, for a non-negative integer m. By [20], the induced rep-
resentation v™p x ™ 'p x --- x p has a unique irreducible subrepresen-
tation, denoted by d([p,v™p]), which is essentially square-integrable. For
every irreducible essentially square-integrable representation 6 € R(GL),
there is a unique e(d) € R such that v~°)§ is unitarizable. Note that
e(6([*p,v°p])) = (a +b)/2. Suppose that &y, s, ..., d; are irreducible essen-
tially square-integrable representations such that e(d1) < e(dz) < ... < e(d).
Then the induced representation d; X do x --- x d; has a unique irreducible
subrepresentation, which we denote by L(d1,da, ..., d). This irreducible sub-
representation is called the Langlands subrepresentation, and it appears with
multiplicity one in the composition series of §; x dg x -+ x 0. Every irre-
ducible representation m € R(GL) is isomorphic to some L(d1, 0, . .., dy) and,
for a given 7, the representations 1, ds, . . ., d; are unique up to a permutation
([2, 15]).

The essentially Speh representations are irreducible representations of the
form L(61,0s,...,0,), where &; =~ ([ 1p, " 1p]), for i = 1,2,...,n,
real numbers a and b such that b — a is a nonnegative integer, and an irre-
ducible cuspidal representation p of GL(n,, F").

For an irreducible smooth representation = € R(GL), let 7 stand for the



contragredient representation of w. If F' = F’ we say that 7 is F’/F-selfdual
if mr~7. If F# F', we denote by # the non-trivial F-automorphism of F’,
let 7 denote the representation g — 7(6(g)), and say that the representation
7 is F'/F-selfdual if T ~ 7.

Through the paper we fix an irreducible cuspidal representation o, € R(G)
and an irreducible cuspidal representation p € R(GL).

By the classification of discrete series representations ([10, 13]), which now
holds unconditionally due to [1], [12, Théoreme 3.1.1] and [5, Theorem 7.8],
a discrete series representation o € GG, is uniquely described by an admissible
triple which consists of the Jordan block Jord(e), the partial cuspidal support
Ocusp, and the e-function ¢,.

The partial cuspidal support of ¢ is an irreducible cuspidal representation
Teusp € R(G) such that there is an irreducible representation m € R(GL) and
an embedding o <= T X 0¢ysp-

The Jordan block of o is set of all ordered pairs (z,p), where z is a
positive integer and p € R(GL) is an irreducible F’/F-selfdual cuspidal rep-
resentation, such that the induced representation 5([1/_%1p,y%1p]) X o is
irreducible, and ¢ ([l/_%_mp, V%+mp]) x o reduces for some positive integer
m. The e-function €, is defined on a subset of Jord(o) U Jord(c) x Jord(c),
and attains values on {1, —1}.

For an irreducible F’/F-selfdual cuspidal representation p € R(GL) we
write Jord, (o) = {z : (z,p) € Jord(o)}. If Jord,(0) # & and x € Jord, (o),
denote x_ = max{y € Jord,(o) : y < z}, if it exists. We note that to define
the e-function on the elements of Jord(o) x Jord(o), it is enough to define
the e-function on the elements of the form ((z_, p), (x, p)). Also, to define the
e-function on the elements of the form (z, p), it is enough to define it either
on (min(Jord,), p) or on (max(Jord,), p).

Let us recall some properties of the e-functions which are commonly used
in the paper, following [14, Section 2]. If ¢,((z_, p), (x,p)) = 1, there is a
discrete series o’ such that Jord(¢’) = Jord(o)\{(z, p), (x_, p)}, o is a sub-
representation of §([v="% p, "z p]) x o’. If in Jord, (o) we have x = y_ and
z = (x_)_, then

o' ((2,0); (Y, ) = € ((2,0), (2, 0)) - €5 ((7, ), (y, p))- (1)

If in Jord,(o) we have z = y_ and €,(z, p) is defined, then

(1, p) = € (Y, p) - € ((7, p), (y, p))- (2)



For more details on these invariants and the notion of the admissible
triple, we refer the reader to [10, 13] and [14, Section 2].

Let us briefly note that notions of the Jordan blocks and e-function from
the Moeeglin-Tadi¢ classification are transferred to the work of Arthur. The
Jordan blocks are precisely the L-parameters of the discrete series of group
G, and for a discrete L-parameter ¢ of GG, there is o belonging to the
corresponding L-packet such that we have

¢ = (‘B(a,p)eJord(a)p & ‘/aa

where V, stands for the unique irreducible a-dimensional representation of
SL(2,C). This can be seen in [11, Theorem 1.3.1] and, for the unitary case,
we refer reader to [4, Sections 7, 8]. Details about the compatibility of the
e-functions can be found in [19].

Basic building blocks in the Moeglin-Tadi¢ classification of discrete series
are the strongly positive representations. An irreducible representation o €
R(G) is called strongly positive if for every embedding

S1 S2 Sk
g —>VUV p1><V IOQX"'XV ,Okmo-cuspa

where p; € R(GL(n,,,F")), i« = 1,2,...,k, are irreducible cuspidal unitary
representations and o.,s, € R(G) is an irreducible cuspidal representation,
we have s; > 0 for each i. By the classification, they are parametrized by the
admissible triples of alternated type. This implies that e,((x_, p), (x,p)) =
—1 for all z € Jord,,.

Suppose that oy, is a strongly positive discrete series such that every
element of its cuspidal support belongs to the set {v*p,o. : © € R}. By
[8, Theorem 1.2], which also covers the classical group case, we have the
following description of og,: If p is not F’/F-selfdual or p x o, reduces, we
have o, = o.. If pis F'/F-selfdual and v*p x o, reduces for o > 0, then there
are ap, as, . . ., Gfa], where [a| denotes the smallest integer which is not smaller
than «, such that —1 <a; <ay <--- <ajq, ¢, —a€Zfori=1,2,... [a],
a1 = a — [a], and o, is a unique irreducible subrepresentation of

5([Va—[a]+1p7 Valp]) % 5([Va—[a]+2p7 Vagp]) N 5([I/ap, p%al p]) X 0,

Also, if a; > a — || + i, then 2a; + 1 € Jord, (o).
This directly implies the following result:



Lemma 2.1. Let p € R(GL) denote an irreducible F'/F-selfdual cuspidal
representation such that v*p x o, reduces for o > 0. Suppose that o, € R(G)
is a strongly positive discrete series such that every element of its cuspidal
support belongs to the set {v*p,o.: © € R}. Let k denote a positive integer,
k < [a], and suppose that there is an x € R such that v*p appears exactly k
times in the cuspidal support of os,. We denote the largest such x by 2.

Then 2z, + 1 € Jord,(osp).

We frequently use the following immediate consequence of the discrete
series classification, which can also be deduced from [14, Section 2]:

Lemma 2.2. Let 0 € R(G) denote a discrete series such that every element
of its cuspidal support belongs to the set {v*p,o.: x € R}, for an irreducible
F'/F-selfdual cuspidal representation p € R(GL). Then there exists a non-
negative integer m and an ordered (m+1)-tuple (o1, 09, ...,0m+1) of discrete
series representations in R(G) such that

1. o= o1,
2. Omi1 1S Strongly positive,

3. forie{1,2,...,m} there are z;,y; € Jord,(0;) such that (y;)- = x;, y; is
the minimaly € Jord,(o;) such thaty_ is defined and €,,((y-, p), (y, p)) =

z;—1 i—1
1, and o; is a subrepresentation of 6([v="= p, vz p]) ¥ 41

Let us provide a technical result which happens to be particularly useful
in our investigation.

Proposition 2.3. Let 0 € R(G) denote a discrete series representation
such that every representation of the general linear group appearing in its
cuspidal support is the twist of the same irreducible F'/F-selfdual cuspi-
dal representation p. Let us denote the partial cuspidal support of o by
oe, and suppose that v*p x o, reduces for o« > 0. To o we attach an or-
dered (m + 1)-tuple (01,09,...,0m+1) of discrete series representations as
in Lemma 2.2, and let x;,y; € Jord,(o;) be such that z; = (y;)- and o;

is a subrepresentation of 5([u‘mi2;lp, z/yiTilp]) X o1, fori=1,...,m. Let
ki={i:1<i<mEZt o} andky = |{j: 1< <m,y'72_1 > a}l|. Let
21,22, ., Z[a] be such that op,41 1s a unique irreducible subrepresentation of

O([p 1M p w51 p]) x - x 6([v%p, 1o p]) % o, (3)

and let ks = |{i: 1 <i<|al,zi = a}|. Then ki + ko + k3 = 2m.

7



Proof. We note that it follows from [12, Théoreme 3.1.1] and [5, Theorem 7.8]
that 2« is an integer.

Since ””2’1 > 0 and "”T’l —a € Zforali=12....m, if a = % we
have k; + ko = 2m. Thus, we can assume that a > 1. If 0,41 = 0., using
a description of Jord,(o.) and x; ¢ Jord,(o.) for i = 1,2,...,m, we obtain

that zigl >« fori=1,2,...,n. This again gives k| + ky = 2m.

It remains to consider the case of non-cuspidal o,,,1. Let S stand for
the set {”“2_1, - xm{l, y12_1, - yWQ_l, 21,. .., %]} Since the sets {“2_1, -
“”’"2_1 }, {y12—1’ e ym2_1 },and {21, ..., 2[q1} are mutually disjoint and for z € S
we have x — a € Z, it follows that there are at most || elements in S which
are smaller than «, where || stands for the largest integer which is not larger
than «a. If k1 + ko = 2m, there is nothing to prove.

Suppose that ki + ko < 2m and let | = 2m — k; — ky. Let us denote by
Tmin the smallest element of the set {11;1, e me—l} Note that zm, < o
and 2&min + 1 ¢ Jord,(0pm+1). This implies that [, 141 = o —[o] + Zmin + 1,
50 zj = a—|a]+jfor j = znin + 1, Zmn +2,...,[a], ie., at least & — Zpin
segments appearing in (3) are nonempty.

Since [ elements of {“””12_1, Rt i

—, ,...,ymTfl} are less than o, and
the smallest one of them equals Z;,, at most || — I — 2y, elements of
{Z[zin]+1> - - - » Z[a]} can be less than o. Consequently, at least

o] = @min = ([@] =1 = 2min) = [o] = [a] +1

elements of {z,,, 41, ..., 2[a1} are greater than or equal to o. Using [o] —|a] =
0 we deduce that k3 > [, so k1 + ko + k3 = 2m and the proposition is
proved. O

In the rest of the paper, we fix a real number a, and non-negative integers
k and n. By S(a, k,n,p) we denote the essentially Speh representation

L(S([vp, v *p]), 6 ([ p, ™5 p]), o 0([w™ = p, w1 p]) ).

We take a moment to explicitly state the formula for the Jacquet modules
of S(a,k,n,p) x o., which present our main tool for the investigation of
discrete series subquotients. It is completely based on the Tadi¢’s structural
formula ([17, Theorem 5.4]) and a description of the Jacquet modules of a
ladder representation ([7, Theorem 2.1]). Let Lad(S(a,k,n,p)) denote the
set of all ordered n-tuples (z1, x9, . .., x,) of real numbers such that z; < x; 1
fori =12,....n—1,z;,—a€Zanda+i—2<xz; <a+k+1i—1 for

8



i=1,2,...,n. Let Lad(S(a,k,n,p)) stand for the set of all ordered pairs
(@1, 20), (91, - ) € Lad(S(a, by, p)) x Lad(S(a k,n, p)) such that
x; <y fori=1,2,...,n. Suppose that p is F’/F-selfdual. We have

W (S(a, k)  0,) = 0
Do LOr v ), ([ v p])) X

Lad(S(a,k,n,p))’
L+ p, v Epl), o o o, v M p]))@
L(([v" 1 p, v p]), ..., 0([v™ T p, ¥ p])) x o

3 Discrete series

By the Moeglin-Tadié classification, if S(a,k,n,p) x 0. contains a discrete
series then p is F'/F-selfdual. Thus, in what follows we assume that p is
F’/F-selfdual and denote by a a unique non-negative real number such that
vep x 0. reduces.

Again, by the Moeglin-Tadi¢ classification, we can assume that a — « is
an integer.

If both a +%k < 0and a+n—1 > 0, then u*(S(a,k,n,p) x o.) does
not contain an irreducible constituent of the form v*p ® © for x > 0, so
S(a,k,n,p) x o. does not contain a discrete series subquotient, since this
would contradict the square-integrability criterion. Thus, a + k£ > 0 or a +
n — 1 < 0. Since in the appropriate Grothendieck group we have

S(a,k,n,p) xo.=S(—a—k—n+1kmn,p) %o, (5)

we can assume that a + k& > 0.

In the case a > 0, a complete description of the composition series of
S(a, k,n, p) xo. is a special case of the results of the first author, given in [3].
In particular, if @ > 0, then a discrete series subquotient of S(a, k, n, p) x o
has to be strongly positive, and the following result is a consequence of [3,
Theorem 3.1]:

Proposition 3.1. If a > 0, then S(a, k,n,p) x 0. contains a discrete series
subquotient if and only if « > 0 and a +n — 1 = a. Furthermore, if a > 0,
a>0anda+n—1=qa, then S(a,k,n,p) x o, contains a unique discrete
series subquotient, which appears with multiplicity one, and is also the unique



a+k

irreducible subrepresentation of both S(a,k,n,p) x o. and 6([v*p, v* ¥ p]) x

. % (5([l/ap, Va+k+n—1p]) X 0.
In what follows, we discuss the case a < 0.

Proposition 3.2. Suppose that a + k > 0, a <0, anda+n—1> 0. If
S(a, k,n,p) xo. contains a discrete series subquotient, then « > 0, a—« € Z,
—§<a and a+n—1=qa.

Proof. Suppose that S(a, k,n,p) x 0. contains a discrete series subquotient
04s- We have already seen that a — o € Z. Since a < 0 and a + k > 0,
the cuspidal support of o, either contains p, or contains % p at least twice.
Thus, o045 is not a strongly positive discrete series. We attach to o4 an
ordered (m + 1)-tuple of discrete series representations (01,09, ...,0m41) as
in Lemma 2.2.

If « € Z, then p appears m times in the cuspidal support of o4, so
m = —a+ 1. If a ¢ Z, then l/%p appears 2[—a| + 1 times in the cuspidal
support of S(a, k,n, p) x o.. Since Ve p appears at most once in the cuspidal
support of 0,,,1, in this case we get m = [—a]. Now it can be directly seen
that in both cases holds m = [—a + 1].

Since p*(S(a, k,n, p) X 0.) contains an irreducible constituent of the form
Vip®m, x> 0, only for x = a + k, it follows that y; = 2(a + k) + 1. Also, it
directly follows that for y € Jord,(o4s) such that y # y; and y_ is defined we
have €5, ((y-, p), (y, p)) = —1.

. . y2—1 z2-1 y2-3

If yo # y1+2, using an embedding o9 <~ v 2 pxdo([v~ "2 p,v 2 p|)xo;3
and a simple commuting argument, we obtain that o4 is a subrepresentation
of an induced representation of the form v p x m. Now the Frobenius
reciprocity implies p*(S(a, k,n,p) x o.) = usz_lp ® 7, which is impossible.
Thus, y» = y1 + 2, and repeating the same arguments we deduce that y; .1 =
yi+2foralle=1,2,...,m—1.

It follows at once that for i = 1,2,...,m—1 we have x; > x; 1 + 2. If for
some ¢ € {1,2,...,m—1} we have z; # ;41 +2, [18, Lemma 8.1] implies that
w1*(04s) contains an irreducible constituent of the form v p ® m, which is
impossible. Thus, for ¢ =1,2,...,m — 1 we have z; = x;,1 + 2.

Since for o € Z we have z,, > 1, it follows that ; > 2(m — 1) + 1
and #- L > _q. Similarly, for o ¢ Z we have z,, > 2, so it follows that
x1 = 2(m— 1)+ 2 and ‘”12_1 > —a. In any case, from y; > x; we obtain
—a<a+k,ie. —g < a.
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Using a + n — 1 > 0, and inspecting the cuspidal support of o4, we con-
clude that m < n, so 2= = a+k+m—1 < a+k+n—1 implies that v*++"1p
appears in the cuspidal support of ¢,,,1, SO 0,,+1 is a non-cuspidal strongly
positive discrete series. Consequently, from the classification of strongly pos-
itive discrete series follows @ > 0 and 2(a + k+n — 1) + 1 € Jord,(o,+1).
Thus, there is an y € Jord,(o,,) such that in Jord,(o,,) we have y_ = y,,. If
&, # min(Jord,(o,,)), there is a x € Jord,(o,,) such that (x,,)- = x. Since
x,y € Jord,(oy,41) and 0,41 corresponds to an admissible triple of the alter-

nated type, we have ¢, ., ((z, p), (v, p)) = —1. Using €, ((zm, p), (Ym,p)) =1
and (1), we obtain

€on (2, 0), (Tm, P)) - €0, ((Ym, 0), (5 p)) = —1,

so we have either ¢, ((z, p), (Tm, p)) = €5,.((x, ), (Tm, p)) = 1 or €5, (Y, p),
(v,P)) = €04, ((Ym, p); (y, p)) = 1. Since y; ¢ Jord,(o,,), we have noted earlier
that both of these equalities must be equal to —1, and we obtain z,, =
min(Jord,(o,,)). If x, > 2, [18, Lemma 8 1] implies that p*(og4s) contains
an irreducible constituent of the form v p® 7, which is impossible. This
implies that fori = 1,2,...,m we have x; = —2a+1-2(i—1) = —2(a+17)+3.

Let ay, ay, ..., af) be such that o,,,; is a unique irreducible subrepresen-
tation of
S([vo 1 p, ) x B([v2 12,12 p]) x - x B[ p, 1711 p]) 3 o

We have noted that v4t*+"~1p appears in the cuspidal support of 0,1, so
ajq] = a+k+mn—1. Also, since vo-lel+l s appears in the cuspidal support of
Om+1, We have a1 > a—|[a|+1. Thus, 2a;+1 € Jord,(oy4) fori =1,2,...,[a].

Since in Jord,(o,,) we have (y,,)- = ., and z,, = min(Jord,(oy,,)), in
Jord,(o4s) we have (2a; + 1)- = y,,,. In the same way as in the first part of
the proof we deduce that vy, = 2a; — 1 and that for i = 1,2,..., [a] we have
a;y1 = a; + 1.

Using embeddings o; — (5([y_%p, uyiT_lp]) x o fori=1,2,...,mand
the Frobenius reciprocity, we get that the Jacquet module of o4 with respect
to the appropriate parabolic subgroup contains an irreducible representation
of the form

y1—1

I p®u22 PR QuE p®u‘“p®ua2p® Q@Vilp@m =
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It follows that [a] =a+k+n—1—(a+k+m)+1=n—m,son = [a]+m.
Using m = [—a + 1] we deduce

1
a+n—1:a+[a]+m—1=a+[a]+[—a+§}—1.

Ifa€Z thenweZ sola]l =a [-a+3]=—-a+landa+n—1=
ata—a+1—-1=a Ifa¢Z then a ¢ Z, 20,20 € Z, so [a] = a + 3,
[—a+3] = —a+3. Thus, we again have a+n—1=a+a+35—a+35—1=q.
This ends the proof. O

Theorem 3.3. Suppose that a +k > 0, a <0, and a+n —1 > 0. Then
S(a, k,n,p) x o. contains a discrete series subquotient if and only if o > 0,
a—a€eZ, —E<aanda+n—1=a.

Proof. The necessity part of the proof follows from the previous proposition.

Let us now assume that « > 0, a — a € Z, —g <aanda+n—-—1=a.
Let | = [—a + 3] and note that then we have a + 1 > 0, a — ! < 0, and
a+1 = a—|a]+1. We denote by o; the unique irreducible subrepresentation

of

5([ aJrlp7 a+k+lp]) > (5([Va+l+lp, Va+k+l+2p]) XX

xé([ a+n_1,07 a+k+n—1p]> X 0, =

5([Va—[a]+ patk+l ]) ([ ]+2p7 Va+k+l+1p]) N

Xé([ a a+k+n 1p]) X 0.

Note that oy is strongly positive. Since S(a+ [, k,n—1,p) x o, is a subrepre-
sentation of the induced representation above, it also has a unique irreducible
subrepresentation which is isomorphic to oy.

We inductively define discrete series representations oy, 03, ..., 0741 such
that, for + = 2,3,...,l + 1, 0; is a unique irreducible subrepresentation of

5([1/a+l—i+lp’ Va+k+l—i+1p]> X 01

such that €, ((2(a+k+1—i+1)+1,p),2(a+k+1—i+1)+3,p)) = —1.

Since o is a subrepresentation of 6([v**~1p, v4T**=1p]) x oy and we have
min(Jord,(o2)) = 2(—a—1+41)+1, it directly follows that €,,((z_, p), (z,p)) =
1 only for x = 2(a+k+1—1)+1, and p*(o2) contains an irreducible constituent
of the form v****=1p @ 7. by [18, Proposition 7.2]. If u*(o3) contains an
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irreducible constituent of the form v*p®m for x > a+k+I[—1, using (2x+1)_ =
2z — 1 and [18, Proposition 7.2] we deduce €,,((2x —1,p), 2z +1,p)) =1, a
contradiction.

If a ¢ Z, then a+1 =1, and using €,,((2,p), 2(a+k+1—1)+1,p)) = 1,
€0y (2(a+k+1-1)+1, p), (2(a+k+1-1)+3,p)) = —1, €5, (2(a+k+1—-1)+3,p) =
1, and the property (2) of the e-function, we obtain €,,(2,p) = —1. This
implies that p*(oy) does not contain an irreducible constituent of the form
v2p @, since otherwise [18, Proposition 7.4] would imply €,, (2, p) = 1.

Thus, the e-function ¢,, is completely determined and if p*(o9) contains
an irreducible constituent of the form v*p @ m, then x =a+ k +1— 1.

In a similar way, for ¢ > 3, using the property (1) of the e-function,
€, (2(—a—1l4+i—1)+1,p),2(a+k+1—i+1)+1,p) =1, 6, ((2(a+k+1—
i+1)+1,p),2a+k+l—i+1)+3,p) =—1,and &, ,((2(—a—1+i—2)+
L,p),2(a+k+1—i+1)+3,p)) =1, we obtain that €,,((z_, p), (x,p)) =1
only for x = 2(a+ k +1—1i+ 1)+ 1. Consequently, for i > 3, ¢, is
completely determined and p*(o;) contains an irreducible constituent of the
form p+hH=I+1 ), @ 1.

Since 1i*(05) does not contain an irreducible constituent of the form 2 p®
m, we get that p*(o;) also does not contain an irreducible constituent of such
a form.

If u*(o;) contains an irreducible constituent of the form v*p ® 7 for x ¢
{3,a +k+1—i+1}, using 22 + 1,2z — 1 € Jord,(0;), together with [18,
Proposition 7.2], we obtain €,,((2x—1, p), (2e+1, p)) = 1, which is impossible.

Consequently, if p*(o;) contains an irreducible constituent of the form
Vip@m,thene =a+k+1—1i+1.

We inductively prove that, for = 1,2,...,l+ 1, 0; is a subrepresentation
of S(a+l—i+1,k,n—1+i—1,p) xo.. We have already seen that this
holds for ¢ = 1. Suppose that i € {2,3,...,1} and that for j = 1,2,...,i we
have 0; — S(a+1—j+1,k,n—1+j—1,p) xo.. Let us prove that ;44
embeds into S(a + 1 —i,k,n—1+1,p) x o,.

From embeddings

Oit1 — (5([l/a+l_ip, Va+k+l—ip]) X 7;
— §([v* T, ) x S(a 4+l —i+ 1 kyn—1+i—1,p) x o,

using [6, Lemma 5.5], whose proof carries directly to the unitary group case,
we deduce that there is an irreducible subquotient 7 of 6([v*+ =1 p, vaTF+=ip]) x
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Sla+1l—i+1,k,n—101+1—1,p) such that o;,1 embeds into m x .. Let
m = L(61,09,...,0,) where 0; = §([v%p,v¥%p]) for j = 1,2,... . m.

Since 7; embeds into an induced representation of the form v¥'p x m, it
follows at once that y; = a+k+1—1. If 1 # a+ [ —1, since for every x such
that v*p appears in the cuspidal support of 7, we have x > a + [ — i there is
aje{23,...,m}such that x; = a+1—i. For je{1,2,...,j — 1} we have
x; > x;, since v*T 7 p appears in the cuspidal support of 7; with multiplicity
one, and e(d;) < e(d;), which implies y;; < y;. Thus, for j' € {1,2,...,5—1}
we have ;s x 0; = §; x 0;;, and a simple commuting argument implies that
0;11 is a subrepresentation of an induced representation of the form v¥% p x 7,
which is impossible since y; > y; = a+k+1—14. Consequently, z; = a+1—1,
and m; is an irreducible subrepresentation of

S([* = p, v R 1) X L8y, 83, . .., Om).

Thus, m*(m;) contains 6([v*H " p, v EH=ip]) @ L(d2,03,...,0,). It can be
easily seen that §([v2"p, v*™* =)@ S(a+1—i+ 1, k,n—1+i—1,p)is
a unique irreducible constituent of

m* ([ p, ) x S(a + 1 =i+ Lk,n = L+ —1,p))

of the form §([v*H=ip, ve+*+i=ip]) @ .

Thus, 7 is an irreducible subrepresentation of &([v*+~p, vatk+tl=ip]) x
Sla+l—i+1,k,n—1+i—1,p),som = S(a+1—1i,k,n—1+1,p). Fori=1
we obtain that o;,; is a subrepresentation of S(a, k,n, p) x g.. This ends the

proof. O
Proposition 3.4. Suppose thata+k > 0,a <0,a+n—1 = «, and —g <a.
Let
Jord = Jord(o.)\{(x, p) : (z,p) € Jord(c.)}u
{2a+k+i)+1,p):i=0,1,....,n—1}U
{2i+1Lp)ri=a—|a]l+1l,a—[a|+2,...,—a}.
We define an admissible triple (Jord, o.,€) with ((2(—a) + 1, p), (2(a + k) +
1,p)) = 1 and e((z_,p), (x,p) = —1 for (x,p') € Jord such that xz_ is
defined and (z,p') # (2(a + k) + 1, p). Also, for p' € R(GL) such that Jord,
is non-empty and consists of even integers, let e(min(Jordy),p’) = —1. Let

o1 stand for a discrete series corresponding to (Jord,o.,€). Then o1 is a
subrepresentation of S(a,k,n,p) x o.. If o is a discrete series subquotient of
S(a,k,n,p) x o, then o = o;.
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Proof. It can be directly verified that (Jord, o, €) is an admissible triple. In
the proof of Theorem 3.3 we have constructed a discrete series subrepresen-
tation of S(a, k,n, p) x 0. which corresponds to (Jord, o, €).

Let us denote by o a discrete series subquotient of S(a, k,n, p) x o.. Ob-
viously, ocusp = 0. and o is not strongly positive. Using cuspidal support
considerations, as in [13, Section 8], we directly obtain Jord(c) = Jord.
Using (4) we obtain that p*(S(a,k,n,p) x o.) contains an irreducible con-
stituent of the form v*p ® 7w, with x > 0, only for z = a + k. From [18,
Propositions 7.2, 7.4] we deduce ¢, = €. ]

Let us now consider the remaining case, where a + £ > 0, a < 0, and
a+n —1<0. Equality (5) enables us to assume a + k +n—1 > —a.

Proposition 3.5. Suppose a + k > 0, a < 0, and a+n —1 < 0. If
S(a, k,n,p) x o, contains a discrete series subquotient, then —g <a.

Proof. Let us suppose that S(a, k,n, p) @ 0. contains a discrete series subquo-
tient and —% > qi.e., —a = a+ k. Let us fix a discrete series subquotient of
S(a,k,n,p) x o. and denote it by 04s. To 04s we attach an ordered (m + 1)-
tuple of discrete series representations (oy,09,...,0,4+1) as in Lemma 2.2.
This leads to y; < y;41 fori =1,2,...,m—1. Using the Frobenius reciprocity
we deduce that the Jacquet module of 045 with respect to the appropriate
parabolic subgroup contains an irreducible constituent of the form

y1—-1

1/2p®l/2p® ®Vm2 p®7r

If a € Z, then p appears n times in the cuspidal support of S(a, k,n, p) xo.
and, since p does not appear in the cuspidal support of ¢,,,1, p appears m
times in the cuspidal support of ;.

If a ¢ 7Z, note that Vép appears 2n times in the cuspidal support of
S(a, k,n ,0) x 0. and, since Ve p appears at most once in the cuspidal support
of o1, V2p appears either 2m or 2m + 1 times in the cuspidal support of

ds- Since oy, is an irreducible subquotient of S(a, k, n, p) % 0., we conclude
2m = 2n, e, m=n.

Several possibilities are studied separately.

Let us first consider the case y; = 2(a + k) + 1 and y;41 = y; + 2 for
1 =1,...,n — 1. This gives z;,1 < x; —2 for v = 1,...,n — 1. Also,
Yo = 2(a+k+n—1)+ 1 and there is a j € {1,...,n} such that y; =
2(—a) + 1, so 1 < 2(—a) + 1. Thus, the cuspidal support of 0,41 equals

15



[V o] U v o gl U U [ g, v T ] U {oL), so v

appears in the cuspidal support of 0,,1 with multiplicity one, and for an x
such that v*p appears in the cuspidal support of ,,.1 we have x < —a. Now
Lemma 2.1 implies 2(—a) + 1 € Jord,(0,+1), a contradiction.

Let us now assume that y; = 2(—a —n + 1) + 1 and y;41 = y; + 2 for
i=1,...,n—1. Note that y, = 2(—a) + 1. It follows that z; = x;,; + 2 for
i=1,...,n—land z; <y; fori=1,...,n. If thereisanie {1,...,n— 1}
such that x; > ;41 + 2, then [18, Lemma 8.1] implies that p*(o4) contains

an irreducible constituent of the form v™= p®@, so0 x; = 2(a + k) + 1 which

is impossible since —a > a + k > —a —n + 1 implies that y; = 2(a + k) + 1

for some j € {1,...,n}. Thus, z; = ;.1 +2 for ¢ = 1,...,n — 1, and
Tn Tp_1+1

the cuspi%afl support of 0,1 equals [VTH p, v kol U (v ) atktly] U

U [vTz p,vttRlp) U {o.). Tt follows that v~%p appears 2a + k + n

P,V
times in the cuspidal support of o,,1, since it appears in the segments
®2a+k+ntl T2atk+n—111 Catl w41

[v™ 2 p,v %], v 2 o,V ol,..., [v 2 p, v =1lp] Also, if

z > —a, then v*p can appear at most 2a + k + n — 1 times in the cuspi-
2atk+n—1+1

dal support of 0,1, since it can appear only in the segments [v P 3
v=atlipl .., [VHTH[), vethn=ls] Lemma 2.1 implies 2(—a)+1 € Jord,(0,41),

a contradiction.

Finally, let us assume that there is an r € {1,...,n — 1} such that y; =
20—a—n+1)+1,yp=2(—a—n+2)+1,..., 9y = 2(—a—n+r)+1,
Yrr1 = 2(a+k)+1, Yo =2(a+k+1)+1,.. .,y =2(a+k+n—r—1)+1.
This implies —a —n +r < a+ k, so —a < a + k + n — r, and there is a
je{r+1,...,n} such that y; = 2(—a) + 1. Note that we have

r,<..<m<y=2(-a—-n+1)+1<y41=2a+k)+1<2(—a)+1

The cuspidal support of ¢,,,1 equals

z1+1 zo+1

zr+l a+k+n—r

[l/ 7, Va+k+n—1p] U [1/72 P, Va+k+n—2p] U--- U [V > pv ,O]U
Tpy1+1 Tpyo+l Tn
v p vl Ul p T Tl U U [ p T T ] U o)

Observe that v~ %p appears r + 1 times in the cuspidal support of o,.1,
T +1 . Ty
since it appears in the segment [v 5 p, v %p] and in the segments [v G 0,

x 1
patktn=rol [V%p, vetkinp) since ; < 2(—a) + 1 fori=1,...,7. On

the other hand, if z > —a, then v*p can appear at most r times in the cuspidal
Tpy1tl

support of 0,41, since it does not appear in the segments [v= 2z p, v %], ...,
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[v E p, v 5] "and it can appear at most once in each of the segments
Tr z1+1 . .
[V p,vethn=rpl v ), vt mpl. Lemma 2.1 implies 2(—a) + 1 €

Jord,(o,+1), a contradiction. ]

Theorem 3.6. Ifa+k>0,a<0, anda+n—1<0, then S(a,k,n,p) x o,
contains a discrete series subquotient if and only if —% <aanda+n—1<
—a.

Proof. Let us first suppose that S(a, k,n,p) x 0. contains a discrete series
subquotient o4, a +k > 0, a <0, and a+n—1 < 0. Proposition 3.5 implies
—% < a. If @ = 0 we obviously have a + n — 1 < —a, so we can assume
that a > 0. To o045 we attach an ordered (m + 1)-tuple (01,09, ...,0,4+1) of
discrete series representations as in Lemma 2.2. In the proof of Proposition
3.5 we have seen that m = n. Thus, from the Proposition 2.3 follows that
v“p appears in the cuspidal support of o4 at least 2n times. Equality of
the cuspidal supports of o4s and S(a,k,n,p) x 0. implies that for every
i€{0,1,...,n — 1} the segment [v*"p, v*"**p] contains both o and —a,
which implies a +n — 1 < —au.

Conversely, suppose that —g <a and a +n —1 < —a. By the classifica-
tion of discrete series, the induced representation 6 ([t~ Lp, vatFtn=1p]) x 0,
contains two mutually non-isomorphic discrete series subrepresentations. We
fix one of them, denote it by oy, and inductively define discrete series rep-
resentations o, 03,...,0, where, for 1 = 2,3,...,n, 0; is a discrete series
subrepresentation of

(S([V(H-n—ip7 Va+k+n—ip]) X ;1

such that €,,((2(a+k+n—1i)+1,p),2(a+k+n—1)+3,p) =—1

We inductively prove that, for i = 1,2,...,n, o; is a subrepresentation
of S(a+n —1i,k,i,p) x g.. This obviously holds for i = 1. Suppose that
i €{2,3,...,n— 1} and that for j = 1,2,...,i we have 0; — S(a +n —
Jyk, g, p) ¥ oc.

We prove that ;41 embeds into S(a+n—i—1, k,i+1, p)xo.. Using embed-
dings 0,41 < §([ve= 1 vethtn=i=ly]) % oy and 0y — S(a+n—i,k,i,p) x
0., together with [6, Lemma 5.5], we get that there is an irreducible subquo-
tient m of §([ve =i p, vatkin=i=lyl) x S(a + n — i, k, i, p) such that ;4
embeds into m % o.. Let m = L(d1,09,...,0,), where §; = §([v%p, ¥ p])
for j =1,2,...,m. It follows that

(3= p, ) s S(a 4 n — i ki, )
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contains an irreducible constituent of the form v¥' p&m, so y; € {a+k+n—i—
1,a+k+n—i}. Since 0;,; embeds into an induced representation of the form
vipxr' using €, ((2(a+k+n—i—1)+1,p), 2(a+k+n—i—1)+3,p)) =
—1 and [18, Proposition 7.2|, we obtain y; = a + k+n —i — 1. Now,
following exactly the same lines as in the proof of Theorem 3.3, we deduce
m=Sla+n—i—1,ki+1,p).

Consequently, o, is a subrepresentation of S(a, k,n, p) x o. n

Proposition 3.7. Suppose thata+k > 0, a <0, a+n—1 < —a, and —% < a.
Let Jord = Jord(co.)u{(2(a+k+i)+1,p),(2(—a—i)+1,p):i=0,1,...,n—
1}. We define two admissible triples (Jord,o.,€1) and (Jord, o.,e_1) with
e+1((2(=a)+1,p), (2(a+k)+1,p)) = 1, ex1((2-, p), (z, p)) = =1 for (z,p) €
Jord such that x_ is defined and (x,p") ¢ {(2(a + k) + 1,p),(2(—a—n+1) +
1,p)}. Also, for je{l,—1} let

e ¢;((2a—1,p),2(—a—n+1)+1,p)=jifa>1,

e ¢;(2(—a—n+1)+1,p) =jifa=3 and€i(2,p) = -1 ifa > 5 and
a ¢,

o ¢;2a+k+n—-1)+1,p)=jifa=0,

and let ex1(min(Jordy),p') = —1 for p' € R(GL) such that Jordy is non-
empty, consists of even integers, and p' % p. For j € {1,—1}, we denote by
o; discrete series corresponding to the admissible triple (Jord, o.,€;). Then
o1 and o_y are subrepresentations of S(a, k,n, p)xo.. If o is a discrete series
subquotient of S(a, k,n, p) x o., then there is a j € {1, —1} such that o = o;.

Proof. 1t can be directly seen that both triples (Jord, o, €;) and (Jord, o, €_1)
are admissible. In the proof of Theorem 3.6 we have constructed discrete se-
ries subrepresentations of S(a, k, n, p) xo. which correspond to (Jord, o, €41).

We note that Jord,(o.) = & exactly when a € {0, 3}

Let o be a discrete series subquotient of S(a, k,n,p) x o.. It is easy to
see that Jord(o) = Jord, ocyusp = 0., and that o is not strongly positive.

By the formula (4), p*(S(a,k,n,p) x o.) contains an irreducible con-
stituent of the form v*p’®@n only for (z,p') € {(a+k,p), (—a—n+1,p)}. Us-
ing [18, Propositions 7.2, 7.4], we conclude that €,((z_, o), (z,p’)) = —1 for
(x, p") € Jord such that x_is defined and (z, p’) ¢ {(2(a+k)+1,p), (2(—a—n+
1)+1, p)}, and that €,(min(Jord, ), p') = —1 for p’ € R(GL) such that p % p,
Jord, is non-empty and consists of even integers. If additionally we have
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e ((2(—a) +1,p), (2(a+ k) + 1,p)) = 1, it follows at once that €, € {€1,¢_1}.
Since (Jord(o), €,,0.) is not of the alternated type, in cases Jord,(o.) = &
and €,((2a—1,p), (2(—a—n+ 1)+ 1,p)) = —1, for Jord,(o.) # &, it casily
follows that €,((2(—a)+1, p), (2(a+k)+1, p)) = 1. Namely, if Jord,(o.) = &,
we have min(Jord,) = 2(—a —n + 1) + 1, so ,((z-, p), (z,p)) = 1 can hold
only for x = 2(a + k) + 1. In the second case, the e-function ¢, attains value
—1 on all pairs of the form ((z_, o), (z,p')) for (z,p') # (2(a + k) + 1, p).

It remains to consider the case @ > 1 and €,((2a —1,p), (2(—a—n+1) +
1,p)) = 1. Let us show that then we have e, = €.

We denote by ¢’ a discrete series such that o embeds into 6([r~*p,
v p]) xoo’. If 20 — 1 > min(Jord,), from €,((2a — 3, p), (2 — 1, p)) =
&((2(—a—n+1)+1,p),(2(—a—n+2)+1,p) = —1 and (1) implies
e ((2a—3,p), (2(—a—n+2)+1,p)) = 1. Continuing in this way, we deduce
that there is a discrete series ¢” such that o is a subrepresentation of

S([v= 2 p, v ")) x - x ([v™ ™, v T p]) X o, (6)

where m = min{|«a|,n}. The Frobenius reciprocity implies that the Jacquet
module of ¢ with respect to the appropriate parabolic subgroup contains

5([y*°‘+1p, V—afnJrlp]) ® §<[Vfoz+2p7 V,a7n+2p]) ® .. ® (7)
5([v = p, ) @ o

Since o is a subquotient of S(a,k,n,p) x 0., a repeated application of the
formula (4) implies that ¢” is an irreducible subquotient of

L(6([v*p, v* ¥ p]), ..., o([p Tt p, pethinmm=lpl) (8)

5([Va_m+1p, I/a+k+n_mp:|), o 76([1/04p7 Va+k+n—1p:|)) X o,

and that the multiplicity of (7) in the Jacquet module of S(a, k,n,p) x o
with respect to the appropriate parabolic subgroup equals the multiplicity of
o” in (8).

If m = n, it follows that ¢” is a discrete series subquotient of S(a —n +
1,k+n—1,n,p) x 0., with « —n + 1 > 0. By Proposition 3.1, this induced
representation contains a unique discrete series subquotient, which appears
there with multiplicity one. Thus, the Jacquet module of S(a,k,n,p)
o. with respect to the appropriate parabolic subgroup contains a unique
constituent of the form (7), which appears with multiplicity one, and has to
appear in the Jacquet module of o with respect to the appropriate parabolic
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subgroup since €;((2a — 1, p), (2(—a —n + 1) + 1,p)) = 1. Since both ¢ and
o, are subquotients of S(a, k,n, p) x o., it follows that €, = €.

If m < n, ¢” is a non-strongly positive discrete series subquotient of (8),
so p*(¢”) contains an irreducible constituent of the form o([v*p/, v¥p']) ® ,
where z < 0 and z +y > 0. Since m = |a], using (4) we deduce that
(y,p) = (a+k,p). Thus, €,»((2(—a)+1,p),(2(a+k)+1,p)) =1 and 0" is a
subrepresentation of an induced representation of the form §([v*p, v***p]) x .
Since a < —a+ 1 and a + k > —a — n + m, embedding (6) can be used to
obtain that o is also a subrepresentation of an induced representation of the
form §([v%p, v*™p]) x 7. This implies ¢, ((2(—a) +1,p), 2(a+k)+1,p)) =1
S0 €, = €; and the proof follows. O

References

[1] J. ARTHUR, The endoscopic classification of representations. Orthogo-
nal and symplectic groups, vol. 61 of American Mathematical Society
Colloquium Publications, American Mathematical Society, Providence,
RI, 2013.

[2] A.BOREL AND N. R. WALLACH, Continuous cohomology, discrete sub-
groups, and representations of reductive groups, Annals of Mathematics
Studies, No. 94, Princeton University Press, Princeton, N.J.; University
of Tokyo Press, Tokyo, 1980.

[3] B. BOSNJAK, Representations induced from cuspidal and ladder rep-
resentations of classical p-adic groups, Proc. Amer. Math. Soc., 149
(2021), pp. 5081-5091.

[4] W. T. GAN, B. Gross, AND D. PRASAD, Symplectic root numbers,
central critical L-values and restriction problems in the representation
theory of classical groups, Astérisque, 346 (2012), pp. 111-170.

[5] W. T. GAN AND L. LoMELI, Globalization of supercuspidal representa-
tions over function fields and applications, J. Eur. Math. Soc., 20 (2018),
pp. 2813-2858.

[6] C. JANTZEN, On supports of induced representations for symplectic and
odd-orthogonal groups, Amer. J. Math., 119 (1997), pp. 1213-1262.

20



[7]

8]

[11]

[12]

[17]

[18]

[19]

A. KRET AND E. LAPID, Jacquet modules of ladder representations, C.
R. Math. Acad. Sci. Paris, 350 (2012), pp. 937-940.

I. MATIC, Strongly positive representations of metaplectic groups, J.
Algebra, 334 (2011), pp. 255-274.

— Representations induced from the Zelevinsky segment and discrete
series in the half-integral case, Forum Math., 33 (2021), pp. 193-212.

C. M@EGLIN, Sur la classification des séries discrétes des groupes clas-
siques p-adiques: parametres de Langlands et exhaustivité, J. Eur. Math.
Soc., 4 (2002), pp. 143-200.

—, Multiplicité 1 dans les paquets d’Arthur auz places p-adiques, Clay
Math. Proc., 13 (2011), pp. 333-374.

—, Paquets stables des séries discrétes accessibles par endoscopie tor-
due; leur parametre de Langlands, in Automorphic forms and related
geometry: assessing the legacy of I. 1. Piatetski-Shapiro, vol. 614 of
Contemp. Math., Amer. Math. Soc., Providence, RI, 2014, pp. 295-336.

C. M@EGLIN AND M. TADIC, Construction of discrete series for classical
p-adic groups, J. Amer. Math. Soc., 15 (2002), pp. 715-786.

G. Mui¢, Composition series of generalized principal series; the case of
strongly positive discrete series, Israel J. Math., 140 (2004), pp. 157-202.

A. J. SILBERGER, The Langlands quotient theorem for p-adic groups,
Math. Ann., 236 (1978), pp. 95-104.

M. TaADIC, Classification of unitary representations in irreducible rep-
resentations of general linear group (non-Archimedean case), Ann. Sci.
Ecole Norm. Sup. (4), 19 (1986), pp. 335-382.

—, Structure arising from induction and Jacquet modules of represen-
tations of classical p-adic groups, J. Algebra, 177 (1995), pp. 1-33.

——, On tempered and square integrable representations of classical p-
adic groups, Sci. China Math., 56 (2013), pp. 2273-2313.

B. XU, On the cuspidal support of discrete series for p-adic quasisplit
Sp(N) and SO(N), Manuscripta Math., 154 (2017), pp. 441-502.

21



[20] A. V. ZELEVINSKY, Induced representations of reductive p-adic groups.
II. On irreducible representations of GL(n), Ann. Sci. Ecole Norm. Sup.

(4), 13 (1980), pp. 165-210.

22



